Enhancing the specific T cell immune response against micro- and nanoparticle immobilized antigen

Cover Page

Cite item

Abstract

The current study was a part of the project on generating viral particle traps occurring due to covalent immobilization on the interface of recombinant virus-specific polymer-based nano- and microparticles. It is assumed that protein-particle conjugates could be able to bind virions followed by engulfment by immune cells. The study was aimed to examine the effect of polylactic acid (PLA) and PLA block-copolymer with polyethylene glycol (PLA-PEG)-based micro- and nanoparticles on the cellular immune response against polymeric particle-bound antigen. Materials and methods. A recombinant chimeric protein beta-2-microglobulin — green fluorescent protein (β2M-sfGFP) was obtained by affine chromatography. The recombinant protein was immobilized onto the polymer particles, which were further used for mice immunization. Female F1 hybrid mice (CBA x C57BL) in experimental and control groups consisted of 4–6-month-old 15 animals (weighted 20–25 g). Intracellular cytokine staining was used to evaluate the cellular immune response. Results and discussion. It was shown that the nanoparticles of PLA block-copolymer with polyethylene glycol (PLA-PEG) were able to bind 10 microgram protein per 1 mg polymer. The polylactic acid nanoparticles were able to bind 2,3 microgram protein per 1 mg polymer. In experiment, mice in group 1 were immunized with 100 nm PLA-PEG particle-β2M-sfGFP conjugate, in group 2 — with same particles together with soluble β2M-sfGFP. In group 3, mice were immunized with 1400 nm PLA particles-β2M-sfGFP conjugate, and in group 4 — with same particles together with soluble protein. The spleens isolated 2 weeks after the four-time intraperitoneal immunization. Comparison of immune response between groups was assessed by nonparametric Kruskal–Wallis criterion with Tukey correction. It was shown that the number of antigen-specific CD4+ T cells produced to model protein was significantly higher after immunization with particle-β2M-sfGFP conjugate, as compared to control groups, wherein immunization was performed with a mixture of protein and unmodified particles (p < 0.001). It was found that the number of antigen-specific CD8+ T cells formed against β2m-sfGFP did not differ between all groups examined.

About the authors

R. G. Sakhabeev

Institute of Experimental Medicine

Author for correspondence.
Email: helm505@mail.ru
ORCID iD: 0000-0002-4367-4924

Rodion G. Sakhabeev,  Junior Researcher, Department of Molecular Genetics 

197376, St. Petersburg, Academician Pavlov str., 12

Phone: +7 953 152-68-07 

Russian Federation

D. S. Polyakov

Institute of Experimental Medicine

Email: ravendoctor@mail.ru

PhD (Medicine), Researcher, Department of Molecular Genetics 

St. Petersburg 

A. D. Goshina

St. Petersburg State University

Email: arina8goshina@gmail.com

4th-year Student

St. Petersburg 

A. A. Vishnya

Herzen State Pedagogical University of Russia

Email: tlou000@yandex.ru

2th-year Master Student

St. Petersburg 

I. V. Kudryavtsev

Institute of Experimental Medicine

Email: igorek1981@yandex.ru

PhD (Biology), Head of the Laboratory of Immunoregulation, Department of Immunology

St. Petersburg 

E. S. Sinitcina

Institute of Chemistry, St. Petersburg State University; Institute of Macromolecular Compounds of the Russian Academy of Sciences

Email: kat_sinitsyna@mail.ru

PhD (Chemistry), Senior Researcher, Interdisciplinary Laboratory of Biomedical Chemistry; Researcher, Laboratory of Polymer Sorbents and Carriers for Biotechnology

St. Petersburg 

V. А. Korzhikov-Vlakh

Institute of Chemistry, St. Petersburg State University

Email: v_korzhikov@mail.ru

PhD (Chemistry), Associate Professor, Interdisciplinary Laboratory of Biomedical Chemistry

St. Petersburg 

T. B. Tennikova

St. Petersburg State University; Institute of Chemistry, St. Petersburg State University

Email: tennikova@mail.ru

PhD, MD (Chemistry), Professor, Leading Researcher and Head of the Interdisciplinary Laboratory of Biomedical Chemistry

St. Petersburg 

M. M. Shavlovsky

Institute of Experimental Medicine; Pavlov First St. Petersburg State Medical University

Email: mmsch@rambler.ru

PhD, MD (Medicine), Head of the Molecular Genetics Laboratory; Professor

St. Petersburg 

References

  1. Поляков Д.С., Антимонова О.И., Сахабеев Р.Г., Грудинина Н.А., Ходова А.Е., Синицына Е.С., Коржиков-Влах В.А., Тенникова Т.Б., Шавловский М.М. Влияние наночастиц из полимолочной кислоты на иммуногенность связанного с ними белка // Инфекция и иммунитет. 2017. Т. 7, № 2. С. 123–129. [Polyakov D.S., Antimonova O.I., Sakhabeev R.G., Grudinina N.A., Khodova A.E., Sinitsyna E.S., Korzhikov-Vlakh V.A., Tennikova T.B., Shavlovsky M.M. Polylactic acid nanoparticles influence on immunogenicity of the protein bound with them. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2017, vol. 7, no. 2, pp. 123–129. (In Russ.)] doi: 10.15789/2220-7619-2017-2-123-129
  2. Поляков Д.С., Грудинина Н.А., Соловьев К.В., Егоров В.В., Сироткин А.К., Алейникова Т.Д., Тотолян Арег А., Шавловский М.М. Бета-2-микроглобулиновый амилоидоз: фибриллогенез природного и рекомбинантных бета- 2-микроглобулинов человека // Медицинский академический журнал. 2010. Т. 10, № 2. С. 40–49. [Poyakov D.S., Grudinina N.A., Solovyov K.V., Egorov V.V., Sirotkin A.K., Aleinicova T.D., Totolian Areg A., Shavlovsky M.M. Beta2-microglobuline amyloidosis: fibrillogenesis of natural and recombinant human beta2-microglobulines. Meditsinskii akademicheskii zhurnal = Medical Aсademical Journal, 2010, vol. 10, no. 2, pp. 40–49. (In Russ.)]
  3. Сахабеев Р.Г., Поляков Д.С., Грудинина Н.А., Вишня А.А., Козловская А.А., Синицына Е.С., Коржиков-Влах В.А., Тенникова Т.Б., Шавловский М.М. Гуморальный иммунный ответ на антиген, иммобилизованный на наночастицах из сополимера полимолочной кислоты и полиэтиленгликоля // Молекулярная медицина. 2019. Т. 17, № 3. С. 32–36. [Sakhabeev R.G., Polyakov D.S., Grudinina N.A., Vishnja A.A., Kozlovskaja A.A., Sinitsyna E.S., KorzhikovVlakh V.A., Tennikova T.B., Shavlovsky M.M. The humoral immune response to the antigen immobilized on nanoparticles of copolymer of polylactic acid and polyethylene glycol. Molekulyarnaya meditsina = Molecular Medicine, 2019, vol. 17, no. 3, pp. 32–36. (In Russ.)] doi: 10.29296/24999490-2019-03-06
  4. Ataman-Önal Y., Munier S., Ganée A., Terrat C., Durand P.Y., Battail N., Verrier B. Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J. Control. Release, 2006, vol. 112, no. 2, pp. 175–185. doi: 10.1016/j.jconrel.2006.02.006
  5. Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, vol. 5, no. 3, pp. 161–171. doi: 10.1038/nrc1566
  6. Gamvrellis A., Leong D., Hanley J.C., Xiang S.D., Mottram P., Plebanski M. Vaccines that facilitate antigen entry into dendritic cells. Immunol. Cell Biol., 2004, vol. 82, no. 5, pp. 506–516. doi: 10.1111/j.0818-9641.2004.01271.x
  7. He X.-S., Holmes T.H., Zhang C., Mahmood K., Kemble G.W., Lewis D.B., Arvin A.M. Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J. Virol., 2006, vol. 80, no. 23, pp. 11756–11766. doi: 10.1128/jvi.01460-06
  8. Martin-Subero M., Diez-Quevedo C. Mental disorders in HIV/HCV coinfected patients under antiviral treatment for hepatitis C. Psychiatry Res., 2016, vol. 246, pp. 173–181. doi: 10.1016/j.psychres.2016.09.041
  9. Panyam J., Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Del. Rev., 2003, vol. 55, no. 3, pp. 329–347. doi: 10.1016/S0169-409X(02)00228-4
  10. Park Y.-M., Lee S.J., Kim Y.S., Lee M.H., Cha G.S., Jung I.D., Han H.D. Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Network, 2013, vol. 13, no. 5: 177. doi: 10.4110/in.2013.13.5.177
  11. Peres C., Matos A.I., Conniot J., Sainz V., Zupančič E., Silva J.M., Florindo H.F. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomaterialia, 2017, vol. 48, pp. 41–57. doi: 10.1016/j.actbio.2016.11.012
  12. Petukhova G., Naikhin A., Chirkova T., Donina S., Korenkov D., Rudenko L. Comparative studies of local antibody and cellular immune responses to influenza infection and vaccination with live attenuated reassortant influenza vaccine (LAIV) utilizing a mouse nasal-associated lymphoid tissue (NALT) separation method. Vaccine, 2009, vol. 27, no. 19, pp. 2580–2587. doi: 10.1016/j.vaccine.2009.02.035
  13. Saini V., Jain V., Sudheesh M.S., Dixit S., Gaur R.L., Sahoo M.K., Kohli D. Humoral and cell-mediated immune-responses after administration of a single-shot recombinant hepatitis B surface antigen vaccine formulated with cationic poly(l-lactide) microspheres. J. Drug Target., 2010, vol. 18, no. 3, pp. 212–222. doi: 10.3109/10611860903386920
  14. Solovyov K.V., Polyakov D.S., Grudinina N.A., Egorov V.V., Morozova I.V., Aleynikova T.D., Shavlovsky M.M. Expression in E. coli and purification of the fibrillogenic fusion proteins ttr-sfgfp and β2M-sfGFP. Prep. Biochem. Biotechnol., 2011, vol. 41, no. 4, pp. 337–349. doi: 10.1080/10826068.2010.548433
  15. Wang Z., Tiruppathi C., Minshall R.D., Malik A.B. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano, 2009, vol. 3, no. 12, pp. 4110–4116. doi: 10.1021/nn9012274

Supplementary files

There are no supplementary files to display.


Copyright (c) 2020 Sakhabeev R.G., Polyakov D.S., Goshina A.D., Vishnya A.A., Kudryavtsev I.V., Sinitcina E.S., Korzhikov-Vlakh V.А., Tennikova T.B., Shavlovsky M.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies