S. pyogenes M49-16 arginine deiminase inhibits proliferative activity of human peripheral blood lymphocytes

Cover Page

Cite item

Abstract

Arginine deiminase is one of three enzymes constituting the arginine deiminase system in bacteria. It was demonstrated that arginine deiminase exerts anti-proliferative effects on some primary and immortalized mouse and human cells. It is assumed that the inhibitory effect of arginine deiminase on cell proliferation might be related to its ability to result in the arginine exhaustion. T-lymphocytes depend on arginine for proliferation, T-cell receptor complex expression, and the differentiation of memory cells. The aim of the current study was to investigate an impact streptococcal arginine deiminase on functions of human peripheral blood lymphocytes. For this, we comparatively analyzed effects of Supernatant of Destroyed Streptococcal Cells (SDSCs) derived from parental strain S. pyogenes M49-16 and its isogenic mutant S. pyogenes M49-16delArcA bearing inactivated arginine deiminase gene (ArcA) on immune cell functions. An impact of supernatants on cell viability was estimated by staining with DAPI dye. Cell proliferation was assessed by MTT-test and flow cytometry by using the method based on intracellular protein staining with vital fluorescent CFSE (carboxyfluorescein succinimidyl ester) dye. In addition, the level of lymphocyte tyrosine phosphatase CD45 expression in various culturing conditions was evaluated. It was demonstrated that S. pyogenes M49-16 SDSCs had no impact on cells viability. Parental strain-derived SDSC exerted virtually no effect on intact cells proliferation, but considerably suppressed ConA-induced cell proliferation. At the same time, mutant strain-derived SDSC significantly stimulated spontaneous cell proliferation, but not that one after mitogen exposure. It was observed that increased proliferation was accompanied by upregulated CD45 expression, although it was not significant in all cases. These data allow to conclude that bacterial arginine deiminase could be one of pathogenicity factors able to limit lymphocyte proliferation and immune response and could be a part of pathogen strategy to suppress immune response in order to improve bacterial growth and dissemination.

About the authors

E. A. Starickova

Institute of Experimental Medicine; Pavlov First St. Petersburg State Medical University

Author for correspondence.
Email: Starickova@yandex.ru

Eleonora A. Starikova - PhD (Biology), Senior Researcher, Department of Immunology, Institute of Experimental Medicine; Associate Professor, Department of Immunology, Pavlov First St. Petersburg State Medical University.

197376, St. Petersburg, Akademika Pavlova str., 12.

Phone: +7 (812) 234-16-69 (office); Fax: +7 (812) 234-94-89

Russian Federation

T. A. Leveshko

Institute of Experimental Medicine

Email: angryteacher@yandex.ru

Technician, Department of Immunology, Institute of Experimental Medicine.

St. Petersburg.

Russian Federation

D. V. Churakina

Pavlov First Saint-Petersburg State Medical University

Email: churakina.darya@mail.ru

Student, Pavlov First St. Petersburg State Medical University.

St. Petersburg.

Russian Federation

I. V. Kudryavtsev

Institute of Experimental Medicine

Email: igorek1981@yandex.ru

PhD (Biology), Senior Researcher, Department of Immunology, Institute of Experimental Medicine.

St. Petersburg.

Russian Federation

L. A. Burova

Institute of Experimental Medicine

Email: lburova@yandex.ru

PhD, MD (Medicine), Leading Researcher, Department of Molecular Microbiology, Institute of Experimental Medicine.

St. Petersburg.

Russian Federation

I. S. Freidlin

Institute of Experimental Medicine; Pavlov First St. Petersburg State Medical University;St. Petersburg State University

Email: irinaf-n@yandex.ru

PhD, MD (Medicine), Professor, RAS Corresponding Member, Head Researcher, Department of Immunology, Institute of Experimental Medicine; Professor of the Department of Immunology, Pavlov First St. Petersburg State Medical University; Professor of the Department of Fundamental Problems of Medicine and Medical Technologies, St. Petersburg State University.

St. Petersburg.

Russian Federation

References

  1. Aziz R.K., Kotb M. Rise and persistence of global M1T1 clone of Streptococcus pyogenes. Emerg. Infect. Dis., 2008, vol. 14, no. 10, pp. 1511-1517. doi: 10.3201/eid1410.071660
  2. Bansal V., Rodriguez P., Wu G., Eichler D.C., Zabaleta J., Taheri F., Ochoa J.B. Citrulline can preserve proliferation and prevent the loss of CD3 zeta chain under conditions of low arginine. J. Parenter. Enter. Nutr., 2004, vol. 28, pp. 423—430. doi: 10.1177/0148607104028006423
  3. Bronte V., Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol., 2005, no. 5, pp. 641—654. doi: 10.1016/j.imbio.2007.09.008
  4. Casiano-Colon A., Marquis R.E. Role of arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl. Environ. Microbiol., 1988, vol. 54, pp. 1318—1324. doi: 10.1007/s00248-014-0535-x
  5. Chang V.T., Fernandes R.A., Ganzinger K.A., Lee S.F., Siebold C., McColl J., Jonsson P., Palayret M., Harlos K., Coles C.H., Jones E.Y., Lui Y., Huang E., Gilbert R.J.C., Klenerman D., Aricescu A.R., Davis S.J. Initiation of T cell signaling by CD45 segregation at “close contacts”. Nat. Immunol., 2016, vol. 17, no. 5, pp. 574—582. doi: 10.1038/ni.3392
  6. Degnan B.A., Fontaine M.C., Doebereiner A.H., Lee J.J., Mastroeni P., Dougan G., Goodacre J.A., Kehoe M.A. Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect. Immun., 2000, vol. 68, no. 5, pp. 2441—2448. doi: 10.1128/iai.68.5.2441-2448.2000
  7. Degnan B.A., Kehoe M.A., Goodacre J.A. Analysis of human T cell responses to group A streptococci using fractionated Streptococcus pyogenes proteins. FEMS Immunol. Med. Microbiol., 1997, vol. 17, no. 3, pp. 161—170. doi: 10.1111/j.1574-695X.1997.tb01009.x
  8. Degnan B.A., Palmer J.M., Robson T., Jones C.E., Fischer M., Glanville M., Mellor G.D., Diamond A.G., Kehoe M.A., Goodacre J.A. Inhibition of human peripheral blood mononuclear cell proliferation by Streptococcus pyogenes cell extract is associated with arginine deiminase activity. Infect. Immun., 1998, vol. 66, no. 7, pp. 3050—3058. doi: 10.1128/IAI.66.7.3050-3058.1998
  9. Fletcher M., Ramirez M.E., Sierra R.A., Raber P., Thevenot P., Al-Khami A.A., Sanchez-Pino D., Hernandez C., Wyczechowska D.D., Ochoa A.C., Rodriguez P.C. L-arginine depletion blunts antitumor T cell responses by inducing myeloid-derived suppressor cells. Cancer Res., 2015, vol. 75, pp. 275—283. doi: 10.1158/0008-5472.CAN-14-1491
  10. Gabrilovich D.I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, vol. 9, no. 3, pp. 162—174. doi: 10.1038/nri2506
  11. Geiger R., Rieckmann J.C., Wolf T., Basso C., Feng Y., Fuhrer T., Kogadeeva M., Picotti P., Meissner F., Mann M., Zamboni N., Sallusto F. Lanzavecchia L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell, 2016, vol. 167, no. 3, pp. 829-842. doi: 10.1016/j.cell.2016.09.031
  12. Hamada S., Kawabata S., Nakagawa I. Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci., 2015, vol. 91, no. 10, pp. 539-559. doi: 10.2183/pjab.91.539
  13. Hamada S., Nakagawa I., Kawabata S. Genetic analysis and virulence factors of group A. streptococci that cause severe invasive infectious diseases. Tanpakushitsu Kakusan Koso, 2005, vol. 50, no. 3, pp. 253-261.
  14. Hermiston M.L., Xu Z., Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol., 2003, vol. 21, pp. 107-137. doi: 10.1146/annurev.immunol.21.120601.140946
  15. Hyatt S.L., Aulak K.S., Malandro M., Kilberg M.S., Hatzoglou M. Adaptive regulation of the cationic amino acid transporter-1 (Cat-1) in Fao cells. J. Biol. Chem., 1997, vol. 272, pp. 19951-19957. doi: 10.1074/jbc.272.32.19951
  16. Kanamoto T., Sato S., Nakashima H., Inoue M. Proliferation of mitogen-stimulated human peripheral blood mononuclear cells is inhibited by extracellular arginine deiminase of Granulicatella elegans isolated from the human mouth. J. Infect Chemother., 2007, vol. 13, no. 5, pp. 353-355. doi: 10.1007/s10156-007-0546-3
  17. Kanaoka M., Fukita Y., Taya K., Kawanaka C., Negoro T., Agui H. Antitumor activity of streptococcal acid glycoprotein produced by Streptococcus pyogenes Su. Jpn. J. Cancer Res., 1987, vol. 78, no. 12, pp. 1409-1414. doi: 10.20772/cancersci1985.78.12_1409
  18. Karpinski T.M., Adamczak A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics, 2018, vol. 10, no. 2: 54. doi: 10.3390/pharmaceutics10020054
  19. Marquis R.E., Bender G.R., Murray D.R., Wong A. Arginine deiminase system and bacterial adaptation to acid environments. Appl. Environ. Microbiol., 1987, vol. 53, no. 1, pp. 198-200. doi: 10.1128/AEM.53.1.198-200.1987
  20. Murray P.J. Amino acid auxotrophy as immunological control nodes. Nat. Immunol., 2016, vol. 17, no. 2, pp. 132-139. doi: 10.1038/ni.3323
  21. Newman J.M.B., DiMaria C.A., Rattigan S., Steen J.T., Miller K.A., Eldershaw T.P.D., Clark M.G. Relationship of MTT reduction to stimulants of muscle metabolism. Chem.-Biol. Interact., 2000, vol. 128, pp. 127-140. doi: 10.1016/S0009-2797(00)00192-7
  22. Nagaraj S., Schrum A.G., Cho H.I., Celis E., Gabrilovich D.I. Mechanism of T-cell tolerance induced by myeloid-derived suppressor cells. J. Immunol., 2010, vol. 184, no. 6, pp. 3106-3116. doi: 10.4049/jimmunol.0902661
  23. Peranzoni E., Marigo I., Dolcetti L., Ugel S., Sonda N., Taschin E., Mantelli B., Bronte V., Zanovello P. Role of arginine metabolism in immunity and immunopathology. Immunobiology, 2007, vol. 212, pp. 795- 812. doi: 10.1016/j.imbio.2007.09.008
  24. Rodriguez P.C., Ochoa A.C., Al-Khami A.A. Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Front. Immunol., 2017, no. 8: 93. doi: 10.3389/fimmu.2017.00093
  25. Spaulding A.R., Salgado-Pabon W., Kohler P.L., Horswill A.R., Leung D.Y., Schlievert P.M. Staphylococcal and streptococcal superantigen exotoxins. Clin. Microbiol. Rev., 2013, vol. 26, no. 3, pp. 422- 447. doi: 10.1128/CMR.00104-12
  26. Starikova E.A., Golovin A.S., Vasilyev K.A., Karaseva A.B., Serebriakova M.K., Sokolov A.V., Kudryavtsev I.V., Burova L.A., Voynova I.V., Suvorov A.N., Vasilyev V.B., Freidlin I.S. Role of arginine deiminase in thymic atrophy during experimental Streptococcus pyogenes infection. Scand. J. Immunol., 2019, vol. 89, no. 2: e12734. doi: 10.1111/sji.12734
  27. Starikova E.A., Sokolov A.V., Vlasenko A.Y., Burova L.A., Freidlin I.S., Vasilyev V.B. Biochemical and biological activity of arginine deiminase from Streptococcus pyogenes M22. Biochem. Cell Biol. 2016, vol. 94, no. 2, pp. 129-137. doi:10.1139bcb-2015-0069
  28. Tarasenko T.N., Gomez-Rodriguez J., McGuire P.J. Impaired T cell function in argininosuccinate synthetase deficiency. J. Leukoc. Biol., 2015, vol. 97, pp. 273-278. doi: 10.1189/jlb.1AB0714-365R
  29. Turenne C.Y., Wallace R., Behr M.A. Mycobacterium avium in the postgenomic era. Clin. Microb. Rev., 2007, vol. 20, no. 2, pp. 205-229. doi: 10.1128/CMR.00036-06
  30. Yoshida J., Ishibashi T., Nishio M. Growth-inhibitory effect of a streptococcal antitumor glycoprotein on human epidermoid carcinoma A431 cells: involvement of dephosphorylation of epidermal growth factor receptor. Cancer Res., 2001, vol. 61, no. 16, pp. 6151-6157.
  31. Yoshida J., Takamura S., Suzuki S. Cell growth-inhibitory action of SAGP, an antitumor glycoprotein from Streptococcus pyogenes (Su strain). Jpn. J. Pharmacol., 1987, vol. 45, no. 2, pp. 43— 47. doi: 10.1254/jjp.45.143
  32. Yoshida J., Takamura S., Suzuki S., Nishio M., Yoshida J. Streptococcal glycoprotein-induced tumour cell growth inhibition involves the modulation of a pertussis toxin-sensitive G protein. Br. J. Cancer. 1996, vol. 73, no. 8, pp. 917—923. doi: 10.1038/bjc.1996.182
  33. Yoshida J., Yoshimura M., Takamura S., Kobayashi S. Purification and characterization of an antitumor principle from Streptococcus hemolyticus, Su strain. Jpn. J. Cancer Res., 1985, vol. 76, no. 3, pp. 213—223. doi: 10.20772/CANCERSCI1985.76.3213

Supplementary files

There are no supplementary files to display.


Copyright (c) 2020 Starickova E.A., Leveshko T.A., Churakina D.V., Kudryavtsev I.V., Burova L.A., Freidlin I.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies