Metal nanoparticle antibacterial effect оn antibiotic-resistant strains of bacteria

Cover Page

Cite item

Abstract

The rapid formation of microbial resistance to modern antibacterial drugs requires to search for new, alternative therapies. It is known that some organisms, such as plants, algae, fungi, are able to convert inorganic metal ions into metal nanoparticles due to the recovery process carried out by proteins, sugars and metabolites contained in the tissues and cells of these organisms. At the same time, many plants (e.g., plantain, yarrow, wormwood, turmeric long, calendula, marsh bagulnik, etc.) and metals (copper, silver, gold, zinc, etc.) themselves have antibacterial properties, so that metal nanoparticles obtained by biological method, or via “Green” synthesis method, from extracts of such plants can become a current alternative to many modern antibacterial drugs. The antibacterial mechanism of action of nanoparticles depends on the type of microorganisms affected, as well as on the type of nanoparticles, their concentration, size, and how they are obtained. Based on this, the study of the antibacterial effect of nanoparticles is one of the promising directions of solving the problem of microbial antibiotic resistance. There was examined antibacterial effect of metal nanoparticles containing silver, copper and gold obtained by biological method from the salts of AgNO3, CuSO4, H[AuCl4] metals, respectively, and the extract of the plant — turmeric long (lat. Curcuma longa) — related to the following bacteria strain collection: E. coli (ATCC 25922), S. aureus (ATCC 25923), MRSA (ATCC 38591) and polyresistant clinical strains isolated from patients of the Regional clinical hospital (Krasnoyarsk) — К. рneumoniae, strain 104, P. аeruginosa, strain 40, P. аeruginosa, strain 215, А. baumannii, strain 210, А. baumannii, strain 211. Study allowed to identify the minimum suppressive concentration of nanoparticles by the method of serial dilutions (MUK 4.2.1890-04) with azurin dye. It was proved that metal nanoparticles exhibit different antibacterial efficacy depending on the type of nanometals used and bacterial cultures. Copper nanoparticles have the highest antibacterial activity, and gold nanoparticles have the lowest. The most marked antibacterial effect was observed against clinical polyresistant strains. Metal nanoparticles can become an alternative to the currently known antibacterial drugs, but despite the high efficiency of nanoparticles against polyresistant to antibacterial drugs microorganisms in vitro, it is necessary to take into account their possible toxic effect on live tissues, which requires further study in experiments in vivo.

About the authors

E. S. Udegova

Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky

Author for correspondence.
Email: To-oz@ya.ru
ORCID iD: 0000-0001-9578-4335

5th year Student majoring in Medical Cybernetics

Krasnoyarsk 

Russian Federation

K. A. Gildeeva

Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky

Email: karinusyagil@gmail.com
ORCID iD: 0000-0002-1260-5790

5th year Student majoring in Medical Cybernetics

Krasnoyarsk 

Russian Federation

T. V. Rukosueva

Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky

Email: ru-ta@inbox.ru
ORCID iD: 0000-0002-2713-8726

PhD (Biology), Associate Professor, Department of Microbiology named after Associate Professor B.M. Zelmanovich

Krasnoyarsk 

Russian Federation

S. Baker

Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky

Email: syedbaker3@gmail.com
ORCID iD: 0000-0003-0554-8764

PhD (Biology), Professor, Department of Microbiology named after Associate Professor B.M. Zelmanovich

Krasnoyarsk 

Russian Federation

References

  1. Авдеенков П.П., Чистяков Н.Е. Механизм денитрификации // Наука, техника и образование. 2019. № 4 (57). С. 19–22. [Avdeenkov P.P., Chistyakov N.E. Denitrification mechanism. Nauka, tekhnika i obrazovanie = Science, Technology and Education, 2019, no. 4 (57), pp. 19–22. (In Russ.)]
  2. Буданова Е.В., Горленко К.Л., Киселев Г.Ю. Вторичные метаболиты растений: механизмы антибактериального действия и перспективы применения в фармакологии // Антибиотики и химиотерапия. 2019. Т. 64, № 5–6. С. 69–76. [Budanova E.V., Gorlenko K.L., Kiselev G.Yu. Secondary plant metabolites: mechanisms of antibacterial action and perspectives of application in pharmacology. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy, 2019, vol. 64, no. 5–6, pp. 69–76. (In Russ.)] doi: 10.24411/0235-2990-2019-100034
  3. Гужова В.Ф., Чернова А.В., Казимирченко О.В. Исследование свойств соли, обогащенной фитокомпонентами лекарственных трав и специй // Вестник международной академии холода. 2017. № 4. С. 9–17. [Guzhova V.F., Chernova A.V., Kazimirchenko O.V. The Properties of salt enriched by phytocomponents of medicinal herbs and spices. Vestnik Mezhdunarodnoy akademii kholoda = Bulletin of the International Academy of Refrigeration, 2017, no. 4, pp. 9–17. (In Russ.)] doi: 10.21047/1606- 4313-2017-16-4-9-17
  4. Дыкман Л.А., Щеголев С.Ю. Взаимодействие растений с наночастицами благородных металлов // Сельскохозяйственная биология. 2017. Т. 52, № 1. С. 13–24. [Dykman L.A., Shchyogolev S.Yu. Interactions of plants with noble metal nanoparticles (review). Sel’skokhozyaistvennaya biologiya = Agricultural Biology, 2017, vol. 52, no. 1, pp. 13–24. (In Russ.)] doi: 10.15389/agrobiology.2017.1.13rus
  5. Ефименко Т.А., Терехова Л.П., Ефременкова О.В. Современное состояние проблемы антибиотикорезистентности патогенных бактерий // Антибиотики и химиотерапия. 2019. № 5. С. 64–68. [Efimenko T.A., Terekhova L.P., Efremenkova O.V. Current state the problem of antibiotic resistance of pathogens. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy, 2019, no. 5, pp. 64–68. (In Russ.)] doi: 10.24411/0235-2990-2019-100033
  6. Леонтьев В.К., Кузнецов Д.В., Фролов Г.А., Погорельский И.П., Латута Н.В., Карасенков Я.Н. Антибактериальные эффекты наночастиц металлов // Российский стоматологический журнал. 2017. Т. 21, № 6. С. 304–307. [Leont’ev V.K., Kuznetsov D.V., Frolov G.A., Pogorelskiy I.P., Latuta N.V., Krasenkov Ya.N. Antibacterial effects of nanoparticles of metals. Rossiiskii stomatologicheskii zhurnal = Russian Dental Journal, 2017, vol. 21, no. 6, pp. 304–307. (In Russ.)] doi: 10.18821/1728-2802-2017-21-6-304-307
  7. Макаров В.В., Лав А., Синицына О.В., Макарова С.С., Яминский И.В., Тальянский М.Э., Калинина Н.О. «Зеленые» нанотехнологии: синтез металлических наночастиц с использованием растений // Acta Naturae (русскоязычная версия). 2014. Т. 6, № 1 (20). С. 37–47. [Makarov V.V., Lav A., Sinitsyna O.V., Makarova S.S., Yaminsky I.V., Talyansky M.E., Kalinina N.O. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (Russian version), 2014, vol. 6, no. 1 (20), pp. 37–47. (In Russ.)] doi: 10.32607/20758251-2014-6-1-35-44
  8. Тапальский Д.В., Тапальский Ф.Д. Антибактериальные свойства растительных экстрактов и их комбинаций с антибиотиками в отношении экстремально-антибиотикорезистентных микроорганизмов // Курский научнопрактический вестник «Человек и его здоровье». 2018. № 1. С. 78–83. [Tapalsky D.V., Tapalsky F.D. Antibacterial effects of herbal extracts and their combinations with antibiotics in relation to extensively antibiotic-resistant microorganisms. Kurskii nauchno-prakticheskii vestnik “Chelovek i ego zdorov’e” = Kursk Scientific and Practical Bulletin “Man and His Health”, 2018, no. 1, pp. 78–83. (In Russ.)] doi: 10.21626/vestnik/2018-1/12
  9. Хохлова О.Е., Акушева Д.Н., Перьянова О.В., Корецкая Н.М., Абарникова О.В., Королькова Е.К., Белоусова Ю.Н., Саламатина О.В., Безручкина Т.Н., Князева К.М., Шогжал И.С., Поткина Н.К., Элярт В.Ф., Ямамото Т. Молекулярногенетические особенности метициллинрезистентных S. aureus, выделенных от лиц пенитенциарной системы, инфицированных ВИЧ // Сибирское медицинское обозрение. 2018. № 2 (110). С. 13–18. [Khokhlova O.E., Akusheva D.N., Per'yanova O.V., Koretskaya N.M., Abarnikova O.V., Korol'kova E.K., Belousova Yu.N., Salamatina O.V., Bezruchkina T.N., Knyazeva K.M., Shogzhal I.S., Potkina N.K., Elyart V.F., Yamamoto T. Molecular-genetic features of methicillin-resistant S. aureus, have got from the persons of the penitentiary system, infected with HIV. Sibirskoe meditsinskoe obozrenie = Siberian Medical Review, 2018, no. 2 (110), pp. 13–18. (In Russ.)] doi: 10.20333/2500136-2018-2-13-18
  10. Arokiyaraj S., Vincent S., Saravanan M., Lee Y., Oh Y.K., Kim K.H. Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif. Cells, Nanomed. Biotechnol., 2017, vol. 45, no. 2, pp. 372–379. doi: 10.3109/21691401.2016.1160403
  11. Baker S., Perianova O.V., Prudnikova S.V., Kuzmin A., Potkina N.K., Khohlova O.Y., Lobova T.I. Phytogenic nanoparticles to combat multidrug resistant pathogens and photocatalytic degradation of dyes. BioNanoScience, 2020, no. 10, pp. 486–492. doi: 10.1007/s12668-020-00727-z
  12. El-Seedi H.R., El-Shabasy R.M., Khalifa Sh.A.M., Saeed A., Shah A., Shah R., Iftikhar F.J., Abdel-Daim M.M., Omri A., Hajrahand N.H., Sabir J.S.M., Zou X., Halabi M.F., Sarhann W., Guo W. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Advances, 2019, no. 9, pp. 24539–24559. doi: 10.1039/C9RA02225B
  13. Hasani A., Madhi M., Gholizadeh P., Mojarrad J.S., Rezaee M.A., Zarrini G., Kafil H.S. Metal nanoparticles and consequences on multi-drug resistant bacteria: reviving their role. SN Appl. Sci. 2019, no. 1 (4). doi: 10.1007/s42452-019-0344-4
  14. Jayarambabu N., Akshaykranth A., Venkatappa Rao T., Venkateswara Rao K., Rakesh Kumar R. Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Mater. Lett., 2019, vol. 259: 126813. doi: 10.1016/j.matlet.2019.126813
  15. Nasrollahzadeh M., Sajjadi M., Dadashi J., Ghafuri H. Pd-based nanoparticles: plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv. Colloid Interface Sci., 2020, vol. 276: 102103. doi: 10.1016/j.cis.2020.102103

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 Udegova E.S., Gildeeva K.A., Rukosueva T.V., Baker S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies