Heterologous immune responses in health and disease

Cover Page

Cite item


Immunological memory and tolerance represent major achievements and advantages of adaptive immunity. Organisms bearing adaptive immunity display prominent competitive advantages in the fight against infections. Memory immune cells are preserved for decades and are able to repel a second attack of an infectious agent. However, studies performed in the XXI century have shown that even unrelated pathogens may be quickly and effectively destroyed by memory cells. This type of response is called heterologous so that heterologous immune response is mainly typical to viral infections and other intracellular infections, where T-cells play a lead role in protection. This review will discuss various mechanisms involved in implementing T-cell cross-reactivity, describe molecular prerequisites for heterologous T-cell responses. Experimental evidence of memory T-cell potential to heterologous immune response in mouse models and in human infections are also discussed. Heterologous immune response is an important immune arm in adults and the elderly when the yield of naive cells to the periphery declines due to thymus involution. Along with obvious advantages, heterologous immune response leads to imbalanced memory T-cell repertoire, replacement of immunodominant epitopes with minor ones allowing viruses to evade immune response that results in virus persistence, or, conversely, fulminant infection course. Another threat of heterologous immune response due to switch in dominant repertoire of recognizable epitopes is presented by random self-epitope recognition, which can lead to development of autoimmune pathology. Heterologous immunity can also disrupt drug-induced tolerance in organ and tissue transplants and lead to graft rejection. Heterologous immune response should be taken into consideration while developing and using new vaccines, especially in adults and the elderly.

About the authors

A. P. Toptygina

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology; Lomonosov Moscow State University

Author for correspondence.
Email: toptyginaanna@rambler.ru

Anna P. Toptygina – PhD, MD (Medicine), Leading Researcher, Laboratory of Cytokine, G.N. Gabrichevsky Research Institute for Epidemiology and Microbilogy; Professor, Department of Immunology, Lomonosov Moscow State University

125212, Moscow, Admiral Makarov str., 10
Phone: +7 (495) 452-18-01 (office). Fax: +7 (495) 452-18-30 

Russian Federation


  1. Adams A.B., Williams M.A., Jones T.R., Shirasugi N., Durham M.M., Kaech S.M., Wherry E.J., Onami T., Lanier J.G., Kokko K.E., Pearson T.C., Ahmed R., Larsen C.P. Heterologous immunity provides a potent barrier to transplantation tolerance. J. Clin. Invest., 2003, vol. 111, pp. 1887–1895. doi: 10.1172/JCI17477
  2. Agrawal B., Gupta N., Vedi S., Singh S., Li W., Garg S., Li J., Kumar R. Heterologous immunity between adenoviruses and hepatitis C virus (HCV): recombinant adenovirus vaccine vectors containing antigens from unrelated pathogens induce cross-reactive immunity against HCV antigens. Cells, 2019, vol. 8, no. 5, pii: E507. doi: 10.3390/cells8050507
  3. Barton E.S., White D.W., Cathelyn J.S., Brett-McClellan K.A., Engle M., Diamond M.S., Miller V.L., Virgin H.W. 4th . Herpesvirus latency confers symbiotic protection from bacterial infection. Nature, 2007, vol. 447, pp. 326–329. doi: 10.1038/nature05762
  4. Brehm M.A., Pinto A.K., Daniels K.A., Schneck J.P., Welsh R.M., Selin L.K. T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat. Immunol., 2002, vol. 3, pp. 627–634. doi: 10.1038/ni806
  5. Butkeviciute E., Jones C.E., Smith S.G. Heterologous effects of infant BCG vaccination: potential mechanisms of immunity. Future Microbiol., 2018, vol. 13, no. 10, pp. 1193–1208. doi: 10.2217/fmb-2018-0026
  6. Casrouge A., Beaudoing E., Dalle S., Pannetier C., Kanellopoulos J., Kourilsky P. Size estimate of the alpha beta TCR repertoire of naive mouse splenocytes. J. Immunol., 2000, vol. 164, pp. 5782–5787. doi: 10.4049/jimmunol.164.11.5782
  7. Chen H.D., Fraire A.E., Joris I., Welsh R.M., Selin L.K. Specific history of heterologous virus infections determines antiviral immunity and immunopathology in the lung. Am. J. Pathol., 2003, vol. 163, pp. 1341–1355. doi: 10.1016/S0002-9440(10)63493-1
  8. Christen U., Edelmann K.H., McGavern D.B., Wolfe T., Coon B., Teague M.K., Miller S.D., Oldstone M.B., von Herrath M.G. A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. J. Clin. Invest., 2004, vol. 114, pp. 1290–1298. doi: 10.1172/JCI22557
  9. Clark I.A. Heterologous immunity revisited. Parasitology, 2001, vol. 122 (suppl.), pp. S51–S59.
  10. Clute S.C., Watkin L.B., Cornberg M., Naumov Y.N., Sullivan J.L., Luzuriaga K., Welsh R.M., Selin L.K. Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein–Barr virus-associated infectious mononucleosis. J. Clin. Invest.,2005, vol. 115, pp. 3602–3612. doi: 10.1172/JCI25078
  11. Cornberg M., Chen A.T., Wilkinson L.A., Brehm M.A., Kim S.K., Calcagno C., Ghersi D., Puzone R., Celada F., Welsh R.M., Selin L.K. Narrowed TCR repertoire and viral escape as a consequence of heterologous immunity. J. Clin. Invest., 2006, vol. 116, pp. 1443–1456. doi: 10.1172/JCI27804
  12. Cornberg M., Sheridan B.S., Saccoccio F.M., Brehm M.A., Selin L.K. Protection against vaccinia virus challenge by CD8 memory T cells resolved by molecular mimicry. J. Virol., 2007, vol. 81, no. 2, pp. 934–944. doi: 10.1128/JVI.01280-06
  13. Debeer P., De M.P., Bruyninckx F., Devlieger R. Brachial plexus neuritis following HPV vaccination. Vaccine, 2008, vol. 26, no. 35, pp. 4417–4419. doi: 10.1016/j.vaccine.2008.06.074
  14. Epstein S.L. Prior H1N1 influenza infection and susceptibility of Cleveland Family Study participants during the H2N2 pandemic of 1957: an experiment of nature. J. Infect. Dis., 2006, vol. 193, pp. 49–53. doi: 10.1086/498980
  15. Flanagan K.L., Klein S., Skakkebaek N.E., Marriott I., Marchant A., Selin L.K., Fish E., Prentice A., Whittle H., Benn C., Aaby P. Sex differences in the vaccine-specific and non-targeted effects of vaccines. Vaccine, 2011, vol. 29, no. 13, pp. 2349–2354. doi: 10.1016/j.vaccine.2011.01.071.
  16. Frankild S., de Boer R.J., Lund O., Nielsen M., Kesmir C. Amino acid similarity accounts for T cell cross-reactivity and for “holes” in the T cell repertoire. PLoS One, 2008, vol. 3: e1831. doi: 10.1371/journal.pone.0001831
  17. Gilbertson B., Germano S., Steele P., Turner S., Fazekas de St. Groth B., Cheers C. Bystander activation of CD8+ T lymphocytes during experimental mycobacterial infection. Infect. Immun., 2004, vol. 72, pp. 6884–6891. doi: 10.1128/IAI.72.12.68846891.2004
  18. Hillaire M.L., Vogelzang-van Trierum S.E., Kreijtz J.H., de Mutsert G., Fouchier R.A., Osterhaus A.D., Rimmelzwaan G.F. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses. J. Gen. Virol., 2013, vol. 94, pp. 583–592. doi: 10.1099/vir.0.048652-0
  19. Kim S.K., Cornberg M., Wang X.Z., Chen H.D., Selin L.K., Welsh R.M. Private specificities of CD8 T cell responses control patterns of heterologous immunity. J. Exp. Med., 2005, vol. 201, pp. 523–533. doi: 10.1084/jem.20041337
  20. Lee J.K., Stewart-Jones G., Dong T., Harlos K., Di Gleria K., Dorrell L., Douek D.C., van der Merwe P.A., Jones E.Y., McMichael A.J. T cell cross-reactivity and conformational changes during TCR engagement. J. Exp. Med., 2004, vol. 200, pp. 1455–1466. doi: 10.1084/jem.20041251
  21. Lee L.Y., Ha do L.A., Simmons C., de Jong M.D., Chau N.V., Schumacher R., Peng Y.C., McMichael A.J., Farrar J.J., Smith G.L., Townsend A.R., Askonas B.A., Rowland-Jones S., Dong T. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J. Clin. Investig., 2008, vol. 118, pp. 3478–3490. doi: 10.1172/JCI32460
  22. Mathurin K.S., Martens G.W., Kornfeld H., Welsh R.M. CD4 T-cell-mediated heterologous immunity between mycobacteria and poxviruses. J. Virol., 2009, vol. 83, pp. 3528–3539. doi: 10.1128/JVI.02393-08
  23. McCoy L., Tsunoda I., Fujinami R.S. Multiple sclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity, 2006, vol. 39, no. 1, pp. 9–19. doi: 10.1080/08916930500484799
  24. Nie S., Lin S.J., Kim S.K., Welsh R.M., Selin L.K. Pathological Features of Heterologous Immunity Are Regulated by the Private Specificities of the Immune Repertoire. Am. J. Pathol., 2010, vol. 176, no. 5, pp. 2107–2112. doi: 10.2353/ajpath.2010.090656
  25. Nikolich-Zugich J., Slifka M.K., Messaoudi I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol., 2004, vol. 4, pp. 123–132. doi: 10.1038/nri1292
  26. Ojaimi S., Buttery J.P., Korman T.M. Quadrivalent Human Papillomavirus recombinant vaccine associated lipoatrophy. Vaccine, 2009, vol. 27, no. 36, pp. 4876–4878. doi: 10.1016/j.vaccine.2009.06.026
  27. Petrova G., Ferrante A., Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit. Rev. Immunol., 2012, vol. 32, pp. 349–372. doi: 10.1615/CritRevImmunol.v32.i4.50
  28. Pewe L.L., Netland J.M., Heard S.B., Perlman S. Very diverse CD8 T cell clonotypic responses after virus infections. J. Immunol., 2004, vol. 172, pp. 3151–3156. doi: 10.4049/jimmunol.172.5.3151
  29. Schwartz R.H. T cell anergy. Annu. Rev. Immunol., 2003, vol. 21, pp. 305–334. doi: 10.1146/annurev.immunol.21.120601.141110
  30. Scott D.R., Borbulevych O.Y., Piepenbrink K.H., Corcelli S.A., Baker B.M. Disparate degrees of hypervariable loop flexibility control T cell receptor cross-reativity, specificity and binding mechanisms. J. Mol. Biol., 2011, vol. 414, pp. 385–400. doi: 10.1016/j.jmb.2011.10.006
  31. Selin L.K., Varga S.M., Wong I.C., Welsh R.M. Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations. J. Exp. Med., 1998, vol. 188, pp. 1705–1715 doi: 10.1084/jem.188.9.1705
  32. Selin L.K., Wlodarczyk M.F., Kraft A.R., Nie S., Kenney L.L., Puzone R., Celada F. Heterologous immunity: immunopathology, autoimmunity and protection during viral infections. Autoimmunity, 2011, vol. 44, no. 4, pp. 328–347. doi: 10.3109/08916934.2011.523277
  33. Sewell A.K. Why must T cells be cross-reactive? Nat. Rev. Immunol., 2012, vol. 12, pp. 669–677. doi: 10.1038/nri3279
  34. Slifka M.K., Whitton J.L. Functional avidity maturation of CD8(+) T cells without selection of higher affinity TCR. Nat. Immunol., 2001, vol. 2, pp. 711–717. doi: 10.1038/90650
  35. Sospedra M., Zhao Y., Zur H.H., Muraro P.A., Hamashin C., de Villiers E.M., Pinilla C., Martin R. Recognition of conserved amino acid motifs of common viruses and its role in autoimmunity. PLoS Pathog., 2005, vol. 1, no. 4: e41. doi: 10.1371/journal.ppat.0010041
  36. Turgeon N.A., Iwakoshi N.N., Phillips N.E., Meyers W.C., Welsh R.M., Greiner D.L., Mordes J.P., Rossini A.A. Viral infection abrogjvates CD8(+) T-cell deletion induced by costimulation blockade. J. Surg. Res., 2000, vol. 93, pp. 63–69. doi: 10.1006/jsre.2000.5962
  37. Urbani S., Amadei B., Fisicaro P., Pilli M., Missale G., Bertoletti A., Ferrari C. Heterologous T cell immunity in severe hepatitis C virus infection. J. Exp. Med., 2005, vol. 201, pp. 675–680. doi: 10.1084/jem.20041058
  38. Valujskikh A., Lakkis F.G. In remembrance of things past: memory T cells and transplant rejection. Immunol. Rev., 2003, vol. 196, pp. 65–74.
  39. Van de Sandt C.E., Kreijtz J.H., de Mutsert G., Geelhoed-Mieras M.M., Hillaire M.L., Vogelzang-van Trierum S.E., Osterhaus A.D., Fouchier R.A., Rimmelzwaan G.F. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J. Virol., 2014, vol. 88, pp. 1684–1693. doi: 10.1128/JVI.02843-13
  40. Walzl G., Tafuro S., Moss P., Openshaw P.J., Hussell T. Influenza virus lung infection protects from respiratory syncitial virusinduced immunopathology. J. Exp. Med., 2000, vol. 192, pp. 1317–1326. doi: 10.1084/jem.192.9.1317
  41. Wedemeyer H., Mizukoshi E., Davis A.R., Bennink J.R., Rehermann B. Cross-reactivity between hepatitis C virus and influenza A virus determinant-specific cytotoxic T cells. J. Virol., 2001, vol. 75, pp. 11392–11400. doi: 10.1128/JVI.75.23.11392-11400.2001
  42. Welsh R.M., Che J., Brehm M. A., Selin L.K Heterologous immunity between viruses. Immunol. Rev., 2010, vol. 235, no. 1, pp. 244–266. doi: 10.1111/j.0105-2896.2010.00897.x.
  43. Welsh R.M., Markees T.G., Woda B.A., Daniels K.A., Brehm M.A., Mordes J.P., Greiner D.L., Rossini A.A. Virus-induced abrogation of transplantation tolerance induced by donor-specific transfusion and anti-CD154 antibody. J. Virol., 2000, vol. 74, pp. 2210–2208. doi: 10.1128/jvi.74.5.2210-2218.2000
  44. Wilson D.B., Wilson D.H., Schroder K., Pinilla C., Blondelle S., Houghten R.A., Garcia K.C. Specificity and degeneracy of T cells. Mol. Immunol., 2004, vol. 40, pp. 1047–1055. doi: 10.1016/j.molimm.2003.11.022
  45. Wu L.C., Tuot D.S., Lyons D.S., Garcia K.C., Davis M.M. Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature, 2002, vol. 418, pp. 552–556. doi: 10.1038/nature00920
  46. Wucherpfennig K.W., Allen P.M., Celada F., Cohen I.R., De Boer R., Garcia K.C., Goldstein B., Greenspan R., Hafler D., Hodgkin P., Huseby E.S., Krakauer D.C., Nemazee D., Perelson A.S., Pinilla C., Strong R.K., Sercarz E.E. Polyspecificity of T cell and B cell receptor recognition. Semin. Immunol., 2007, vol. 19, pp. 216–224. doi: 10.1016/j.smim.2007.02.012
  47. Yewdell J.W., Bennink J.R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol., 1999, vol. 17, pp. 51–88. doi: 10.1146/annurev.immunol.17.1.51
  48. Yin Y., Mariuzza R.A. The multiple mechanisms of T cell cross-reactivity. Immunity, 2009, vol. 31, pp. 849–851. doi: 10.1016/j.immuni.2009.12.002

Supplementary files

There are no supplementary files to display.

Copyright (c) 2020 Toptygina A.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies