A role of peptidoglycan recognition proteins in regulating innate immune response

Cover Page

Cite item

Abstract

By now, a whole number of pathogenic antibiotic-resistant or tolerant microorganisms has been progressively increased. Hence, efficient fight against them requires to change the class of antibiotics, increase their dose, or develop new antimicrobial drugs. On the contrary, another option could rely on augmenting innate immunity. During coevolution, eukaryotes have developed several ways for their protection against microorganisms. Innate immunity conserved in all multicellular organisms. The essential principles of innate immunity include recognition of a foreign structures and their subsequent destruction. A set of specific receptors recognize conserved pathogen-derived structures. Elimination occurs due to phagocytosis and cleavage, e.g. via oxidative burst in phagocytic cells, compliment system or antimicrobial peptides. Recognition system in innate immunity is based on the pattern recognition receptors. Due to the pathogen diversity, multiple conserved structures typical to pathogens (e.g. lipopolysaccharide, peptidoglycan, flagellin etc.) are sensed by numerous receptors. The family of peptidoglycan recognition proteins is among such receptors, which were first isolated in 1996 from the silkworm Bombyx mori and mice. Later, it was demonstrated that this family is conserved and its members are found in insects, fish and mammals. Here, functions of insect peptidoglycan recognition proteins in Drosophila melanogaster as well as mammals are discussed. Such proteins are expressed mainly in liver cells (insects — in adipose tissue cells as analogue of mammalian liver), intestinal cells, and epidermis. Numerous studies demonstrate that peptidoglycan-recognition proteins moderate immune response, and may act as antimicrobial proteins, or to regulate microbiota as well as prevent enterocyte activation and restrict inflammatory response. Due to evolutionary conservatism observed for such proteins and inability for bacteria to evade their protective effects, it seems promising to use peptidoglycan recognition proteins in a combination therapeutic approach against antibiotic-resistant and antibiotic-tolerant forms of microorganisms.

About the authors

D. A. Slonova

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology;
Skolkovo Institute of Science and Technology

Email: daria.slonova@fccho-moscow.ru

Investigator, Laboratory of Molecular Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; PhD Student, Skolkovo Institute of Science and Technology

Moscow

Russian Federation

A. V. Posvyatenko

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Email: alexandra.posvyatenko@fccho-moscow.ru

PhD (Biology), Senior Researcher, Laboratory of Molecular Immunology

Moscow

Russian Federation

A. V. Kibardin

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Email: alexey.kibardin@fccho-moscow.ru

PhD (Biology), Senior Researcher, Laboratory of Molecular Immunology

Moscow

Russian Federation

G. P. Georgiev

Institute of Gene Biology

Email: georgiev@igb.ac.ru

PhD, MD (Biology), Adviser of RAS, Professor, RAS Full Member, Head Researcher, Laboratory of Gene Therapy

Moscow

Russian Federation

N. V. Gnuchev

Institute of Gene Biology

Email: gnuchev@igb.ac.ru

PhD, MD (Biology), Adviser of RAS, Professor, RAS Corresponding Member, Head Researcher, Laboratory of Immunogenetics of Cancer

Moscow

Russian Federation

S. S. Larin

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Author for correspondence.
Email: sergei_larin@mail.ru

Larin Sergey S, PhD (Biology), Deputy Director for Science, Molecular and Experimental Medicine

117997, Moscow, Samory Mashela str., 1

Russian Federation

References

  1. Кибардин А.В., Миркина И.И., Закеева И.Р., Баранова Е.В., Георгиев Г.П., Киселев С.Л. Анализ экспрессии белков, кодируемых семейством генов tag7/tagB(PGRP-S,L), в клетках периферической крови человека // Генетика. 2003. Т. 39, № 2. C. 244–249.
  2. Кустикова О.С., Киселев С.Л., Бородулина O.P., Сенин В.М., Афанасьева А.В., Кабишев А.А. Клонирование гена tag7, экспрессирующегося в метастазирующих опухолях мыши // Генетика. 1996. Т. 32, № 5. C. 621–628
  3. Слонова Д.А., Посвятенко А.В., Сысолятина Е.В., Еромолаева С.А., Кибардин А.В., Лысюк Е.Ю., Гапонов А.М., Гнучев Н.В., Георгиев Г.П., Ларин С.С. Влияние пептидогликан-распознающего белка Tag-7/PGLYRP-1 на внутриклеточное выживание Listeria monocytogenes // Медицинская иммунология. 2017. Т. 19, Спец. вып. C. 83.
  4. Тутельян А.В., Гапонов А.М., Писарев В.М., Эльрегистан Г.И. Дормантное состояние микроорганизмов и профилактика инфекций, связанных с оказанием медицинской помощи // Терапевтический архив. 2015. Т. 87, № 11. C. 103–108.
  5. Basbous N., Coste F., Leone P., Vincentelli R., Royet J., Kellenberger C., Roussel A. The Drosophila peptidoglycan-recognition protein LF interacts with peptidoglycan-recognition protein LC to downregulate the Imd pathway. EMBO Rep., 2011, vol. 12, no. 4, pp. 327–333.
  6. Bischoff V., Vignal C., Boneca I.G., Michel T., Hoffmann J.A., Royet J. Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat. Immunol., 2004, vol. 5, no. 11, pp. 1175–1180.
  7. Chang C.I., Chelliah Y., Borek D., Mengin-Lecreulx D., Deisenhofer J. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science, 2006, vol. 311, no. 5768, pp. 1761–1764.
  8. Charroux B., Capo F., Kurz C.L., Peslier S., Chaduli D., Viallat-Lieutaud A., Royet J. Cytosolic and secreted peptidoglycandegrading enzymes in drosophila respectively control local and systemic immune responses to microbiota. Cell Host Microbe., 2018, vol. 23, no. 2, pp. 215–228.
  9. Choe K.M., Werner T., Stöven S., Hultmark D., Anderson K.V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science., 2002, vol. 296, no. 5566, pp. 359–362.
  10. De Marzi M.C., Todone M., Ganem M.B., Wang Q., Mariuzza R.A., Fernández M.M., Malchiodi E.L. Peptidoglycan recognition protein-peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response. Immunology, 2015, vol. 145, no. 3, pp. 429–442. doi: 10.1111/imm.12460
  11. Dziarski R., Gupta D. Mammalian PGRPs: novel antibacterial proteins. Cell Microbiol., 2006, vol. 8, no. 7, pp. 1059–1069. doi: 10.1111/j.1462-5822.2006.00726.x
  12. Dziarski R., Gupta D. The peptidoglycan recognition proteins (PGRPs). Genome Biol., 2006, vol. 7, no. 8, p. 232.
  13. Dziarski R., Kashyap D.R., Gupta D. Mammalian peptidoglycan recognition proteins kill bacteria by activating two-component systems and modulate microbiome and inflammation. Microb. Drug Resist., 2012, vol. 18, no. 3, pp. 280–285.
  14. Ferrandon D., Imler J.L., Hetru C., Hoffmann J.A. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol., 2007, vol. 7, no. 11, pp. 862–874.
  15. Gelius E., Persson C., Karlsson J., Steiner H. A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochem. Biophys. Res. Commun., 2003, vol. 306, no. 4, pp. 988–994.
  16. Gobert V., Gottar M., Matskevich A.A., Rutschmann S., Royet J., Belvin M., Hoffmann J.A., Ferrandon D. Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science, 2003, vol. 302, no. 5653, pp. 2126–2130.
  17. Gottar M., Gobert V., Michel T., Belvin M., Duyk G., Hoffmann J.A., Ferrandon D., Royet J. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature, 2002, vol. 416, no. 6881, pp. 640–644.
  18. Guan R., Mariuzza R.A. Peptidoglycan recognition proteins of the innate immune system. Trends Microbiol., 2007, vol. 15, no. 3, pp. 127–134.
  19. Hoffmann J.A. The immune response of Drosophila. Nature, 2003, vol. 426, no. 6962, pp. 33–38.
  20. Hyyryläinen H.L., Bolhuis A., Darmon E., Muukkonen L., Koski P., Vitikainen M., Sarvas M., Prágai Z., Bron S., van Dijl J.M., Kontinen V.P. A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol. Microbiol., 2001, vol. 41, no. 5, pp. 1159–1172. doi: 10.1046/j.1365-2958.2001.02576.x
  21. Jang I.H., Chosa N., Kim S.H., Nam H.J., Lemaitre B., Ochiai M., Kambris Z., Brun S., Hashimoto C., Ashida M., Brey P.T., Lee W.J. A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell, 2006, vol. 10, no. 1, pp. 45–55.
  22. Kaneko T., Goldman W.E., Mellroth P., Steiner H., Fukase K., Kusumoto S., Harley W., Fox A., Golenbock D., Silverman N. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity, 2004, vol. 20, no. 5, pp. 637–649.
  23. Kaneko T., Yano T., Aggarwal K., Lim J.H., Ueda K., Oshima Y., Peach C., Erturk-Hasdemir D., Goldman W.E., Oh B.H., Kurata S., Silverman N. PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat. Immunol., 2006, vol. 7, no. 7, pp. 715–723.
  24. Kang D., Liu G., Lundström A., Gelius E., Steiner H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 17, pp. 10078–10082.
  25. Kashyap D.R., Wang M., Liu L.H., Boons G.J., Gupta D., Dziarski R. Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat. Med., 2011, vol. 17, no. 6, pp. 676–683.
  26. Kibardin A., Karpova T., Sapenko T., Vazquez-Boland J.A., Kiselev S., Ermolaeva S. Mammalian peptidoglycan recognition protein Tag-L inhibits Listeria monocytogenes invasion into epithelial cells. FEMS Immunol. Med. Microbiol., 2006, vol. 46, no. 2, pp. 284–290. doi: 10.1111/j.1574-695X.2005.00038.x
  27. Kibardin A.V., Mirkina I.I., Baranova E.V., Zakeyeva I.R., Georgiev G.P., Kiselev S.L. The differentially spliced mouse tagL gene, homolog of tag7/PGRP gene family in mammals and Drosophila, can recognize Gram-positive and Gram-negative bacterial cell wall independently of T phage lysozyme homology domain. J. Mol. Biol., 2003, vol. 326, no. 2, pp. 467–474.
  28. Kiselev S.L., Kustikova O.S., Korobko E.V., Prokhortchouk E.B., Kabishev A.A., Lukanidin E.M., Georgiev G.P. Molecular cloning and characterization of the mouse tag7 gene encoding a novel cytokine. J. Biol. Chem., 1998, vol. 273, no. 29, pp 18633–18639.
  29. Kohanski M.A., Dwyer D.J., Wierzbowski J., Cottarel G., Collins J.J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell, 2008, vol. 135, no. 4, pp. 679–690.
  30. Lemaitre B., Hoffmann J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol., 2007, vol. 25, pp. 697–743. doi: 10.1146/annurev.immunol.25.022106.141615
  31. Ligoxygakis P., Pelte N., Hoffmann J.A., Reichhart J.M. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science, 2002, vol. 297, no. 5578, pp. 114–116.
  32. Lim J.H., Kim M.S., Kim H.E., Yano T., Oshima Y., Aggarwal K., Goldman W.E., Silverman N., Kurata S., Oh B.H. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem., 2006, vol. 281, no. 12, pp. 8286–8295.
  33. Liu C., Gelius E., Liu G., Steiner H., Dziarski R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J. Biol. Chem., 2000, vol. 275, no. 32, pp. 24490–24499.
  34. Liu C., Xu Z., Gupta D., Dziarski R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem., 2001, vol. 276, no. 37, pp. 34686–34694.
  35. Lu X., Wang M., Qi J., Wang H., Li X., Gupta D., Dziarski R. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J. Biol. Chem., 2006, vol. 281, no. 9, pp. 5895–5907.
  36. Maillet F., Bischoff V., Vignal C., Hoffmann J., Royet J. The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation. Cell Host Microbe, 2008, vol. 3, no. 5, pp. 293–303.
  37. Mathur P., Murray B., Crowell T., Gardner H., Allaire N., Hsu Y.M., Thill G., Carulli J.P. Murine peptidoglycan recognition proteins PGLYRPIalpha and PGLYRPIbeta are encoded in the epidermal differentiation complex and are expressed in epidermal and hematopoietic tissues. Genomics, 2004, vol. 83, no. 6, pp. 1151–1163.
  38. Mellroth P., Karlsson J., Steiner H. A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem., 2003, vol. 278, no. 9, pp. 7059–7064.
  39. Mellroth P., Steiner H. PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun., 2006, vol. 350, no. 4, pp. 994–999.
  40. Mirkina I.I., Kibardin A.V., Korneeva E.A., Gnuchev N.V., Georgiev G.P., Kiselev S.L. Cloning and study of new mammalian genes containing the region of structural homology with phage lysozyme. Rus. J. Genetics, 2000, vol. 36, no. 11, pp. 1492–1500.
  41. Neyen C., Runchel C., Schüpfer F., Meier P., Lemaitre B. The regulatory isoform rPGRP-LC induces immune resolution via endosomal degradation of receptors. Nat. Immunol., 2016, vol. 17, no. 10, pp. 1150–1158
  42. Rämet M., Manfruelli P., Pearson A., Mathey-Prevot B., Ezekowitz R.A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature, 2002, vol. 416, no. 6881, pp. 644–648.
  43. Royet J., Dziarski R. Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat. Rev. Microbiol., 2007, vol. 5, no. 4, pp. 264–277.
  44. Royet J., Gupta D., Dziarski R. Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat. Rev. Immunol., 2011, vol. 11, no. 12, pp. 837–851.
  45. Saha S., Jing X., Park S.Y., Wang S., Li X., Gupta D., Dziarski R. Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-gamma. Cell Host Microbe, 2010, vol. 8, no. 2, pp. 147–162.
  46. Saha S., Qi J., Wang S., Wang M., Li X., Kim Y.G., Núñez G., Gupta D., Dziarski R. PGLYRP-2 and Nod2 are both required for peptidoglycan-induced arthritis and local inflammation. Cell Host Microbe, 2009, vol. 5, no. 2, pp. 137–150.
  47. Shrivastav A., Dabrowski A.N., Conrad C., Baal N., Hackstein H., Plog S., Dietert K., Gruber A.D., N’Guessan P.D., Aly S., Suttorp N., Zahlten J. Peptidoglycan recognition protein 3 does not alter the outcome of pneumococcal pneumonia in mice. Front Microbiol., 2018, vol. 9, no. 103.
  48. Tydell C.C., Yount N., Tran D., Yuan J., Selsted M.E. Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils. J. Biol. Chem., 2002, vol. 277, no. 22, pp. 19658–19664.
  49. Tydell C.C., Yuan J., Tran P., Selsted M.E. Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties. J. Immunol., 2006, vol. 176, no. 2, pp. 1154–1162.
  50. Uehara A., Sugawara Y., Kurata S., Fujimoto Y., Fukase K., Kusumoto S., Satta Y., Sasano T., Sugawara S., Takada H. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell Microbiol., 2005, vol. 7, no. 5, pp. 675–686. doi: 10.1111/j.1462-5822.2004.00500.x
  51. Wang M., Liu L.H., Wang S., Li X., Lu X., Gupta D., Dziarski R. Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides. J. Immunol., 2007, vol. 178, no. 5, pp. 3116–3125.
  52. Wang Z.M., Li X., Cocklin R.R., Wang M., Wang M., Fukase K., Inamura S., Kusumoto S., Gupta D., Dziarski R. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J. Biol. Chem., 2003, vol. 278, no. 49, pp. 49044– 49052.
  53. Weber A.N., Tauszig-Delamasure S., Hoffmann J.A., Lelièvre E., Gascan H., Ray K.P., Morse M.A., Imler J.L., Gay N.J. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nat. Immunol., 2003, vol. 4, no. 8, pp. 794–800.
  54. Werner T., Borge-Renberg K., Mellroth P., Steiner H., Hultmark D. Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J. Biol. Chem., 2003, vol. 278, no. 29, pp. 26319–26322.
  55. Werner T., Liu G., Kang D., Ekengren S., Steiner H., Hultmark D. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 25, pp. 13772–13777.
  56. Yano T., Mita S., Ohmori H., Oshima Y., Fujimoto Y., Ueda R., Takada H., Goldman W.E., Fukase K., Silverman N., Yoshimori T., Kurata S. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat. Immunol., 2008, vol. 9, no. 8, pp. 908–916.
  57. Yoshida H., Kinoshita K., Ashida M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem., 1996, vol. 271, no. 23, pp. 13854–13860.
  58. Zenhom M., Hyder A., Kraus-Stojanowic I., Auinger A., Roeder T., Schrezenmeir J. PPARγ-dependent peptidoglycan recognition protein 3 (PGlyRP3) expression regulates proinflammatory cytokines by microbial and dietary fatty acids. Immunobiology, 2011, vol. 216, no. 6, pp. 715–724.

Copyright (c) 2020 Slonova D.A., Posvyatenko A.V., Kibardin A.V., Georgiev G.P., Gnuchev N.V., Larin S.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies