Examining immune arms in mice immunized with site-specific influenza virus mutants

Cover Page

Cite item

Abstract

Site-specific mutants as candidates for live influenza vaccines were resulted from directly introducing into the genome of the pathogenic influenza virus A/WSN/33 (H1N1) strain ts mutations derived from the genes encoding the polymerase complex proteins from some cold-adapted strains serving as attenuation donor. Here we present the data of a comparative study examining immune system arms in mice immunized intranasally with influenza virus mutants and classical cold-adapted reassortant obtained by crossing cold-adapted strain Donor A/Krasnodar/101/35/59 (H2N2) with strain A/WSN/33 (H1N1) bearing surface antigens (hemagglutinin and neuraminidase) similar to mutants. Immunophenotyping mononuclear leukocytes from immunized mice indicated at moderate suppressive effect after using site-specific mutant and the HA reassortant viruses on some immune cell subsets. All viruses in immunized mice resulted in activation of certain lymphocyte subsets including MHC II-positive cells, CD45+/CD19+ B lymphocytes and natural killer cells (CD16/32+/CD3). Timescale and magnitude of activation markedly differed for each cell subsets. Mice immunized with mutants M26 and U2 peaked with count of CD16/32+/CD3 expressing cells on day 2 after the second immunization compared with control (p < 0.05) that may suggest about an important role for NK cells in activating immune response. In contrast, no significant changes were observed during the study in percentage of CD4+/CD25+/Fox P3 regulatory T cells, CD4+ T helpers and CD8+ cytotoxic cells, except for a sharply decreased count of activated CD4+/CD25+ cells (4-fold) on day 7 after immunization with mutant virus M26. Moreover, mutants U2 and M26 more moderately increased percentage of TLR2- and TLR4-positive cells. The viruses studied ambiguously affected count of TLR9-expressing cells in immunized animals. All viruses increased phagocytic activity in monocytes, but not neutrophils. Despite the moderate activation of innate and adaptive immunity arms, site-specific mutants more profoundly affected humoral reactions inducing increased antibody titers, so that immunogenicity of mutant viruses was higher than that of the cold-adapted reassortant. Thus, the findings hold a promise of using site-specific mutants as live influenza vaccines.

About the authors

S. G. Markushin

Mechnikov Research Institute for Vaccines and Sera

Author for correspondence.
Email: s.g.markushin@rambler.ru

Stanislav G. Markushin – PhD, MD (Medicine), Senior Researcher, Head of Laboratory of Genetics of RNA viruses

115088, Moscow, 1st Dubrovskaya str., 15
Phone: +7 (495) 674-02-47 

Russian Federation

N. K. Akhmatova

Mechnikov Research Institute for Vaccines and Sera

Email: anelly@mail.ru

PhD, MD (Medicine), Senior Researcher, Head of Laboratory of Mechanisms of Immunity Regulation

Moscow

Russian Federation

V. N. Stolpnikova

Mechnikov Research Institute for Vaccines and Sera

Email: stolpnikovav@bk.ru

PhD (Biology), Leading Researcher, Laboratory of Mechanisms of Immunity Regulation

Moscow

Russian Federation

I. Iv. Akopova

Mechnikov Research Institute for Vaccines and Sera

Email: i.i.akopova@bk.ru

PhD (Biology), Leading Researcher, Laboratory of Genetics of RNA viruses

Moscow

Russian Federation

A. A. Rtishchev

Mechnikov Research Institute for Vaccines and Sera

Email: rtishchevartyom@gmail.com

Junior Researcher, Laboratory of Genetics of RNA viruses

Moscow

Russian Federation

E. O. Kalinichenko

Mechnikov Research Institute for Vaccines and Sera

Email: gladius.domini@gmail.com

Junior Researcher, Laboratory of Mechanisms of Immunity Regulation

Moscow

Russian Federation

References

  1. Маркушин С.Г., Кост В.Ю., Акопова И.И., Коптяева И.Б., Лисовская К.В., Переверзев А.Д., Цфасман Т.М. Исследование возможности использования сайт-специфического мутагенеза в конструировании живых гриппозных вакцин // Эпидемиология и вакцинопрофилактика. 2014. № 6 (79). C. 100–103.
  2. Маркушин С.Г., Переверзев А.Д., Ахматова Н.К., Кривцов Г.Г. Изучение иммунного ответа мышей, иммунизированных интраназально живой гриппозной холодоадаптированной вакциной в комбинации с производными хитозана в качестве адъювантов // Российский иммунологический журнал. 2011. Т. 5 (14), № 3–4. С. 233–243.
  3. Arankalle V.A., Lole K.S., Arya R.P., Tripathy A.S., Ramdasi A.Y., Chadha M.S. Role of host immune response and viral load in the differential outcome of pandemic H1N1 2009 influenza virus interaction in indian patients. PLoS One, 2010, vol. 5, no. 10: e13099. doi: 10.1371/journal.pone.0013099
  4. Cox A., Dewhurst S. A single mutation at PB1 residue 319 dramatically increases the safety of PR8 live attenuated influenza vaccine in a murine model without compromising vaccine efficacy. J. Virol., 2015, vol. 90, no. 5, pp. 2702–2705. doi: 10.1128/JVI.02723-15
  5. Jin H., Zhou H., Lu B., Kemble G. Imparting temperature sensitivity and attenuation in ferrets to A/Puerto/8/34 influenza virus by transferring the genetic signature for temperature sensitivity from cold-adapted A/Ann Arbor/6/60. J. Virol., 2004, vol. 2, pp. 995–998. doi: 10.1128/JVI.78.2.995-998.2004
  6. Kost V.Y., Koptyaeva I.B., Akopova I.I., Tsfasman T.M., Rtishchev A.A., Lisovskaya K.V., Markushin S.G. Investigation of efficiency of site-specific mutants of the influenza virus in homological and heterological control infection. EC Microbiology, 2017, vol. 12, no. 5, pp. 232–242.
  7. Liu Y., Chen H., Sun Y., Chen F. Antiviral role of Toll-like receptors and cytokines against the new 2009 H1N1 virus infection. Mol. Biol. Rep., 2012. vol. 39, pp. 1163–1172. doi: 10.1007/s11033-011-0846-7
  8. Solorzano A., Ye J., Perez D.R. Alternative live-attenuated influenza vaccines based on modification in the polymerase genes protect against epidemic and pandemic flu. J. Virol., 2010, vol. 84, no. 9, pp. 4587–4596. doi: 10.1128/JVI.00101-10
  9. Song H., Nieto G., Perez D. A new generation of modified live-attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates. J. Virol., 2007, vol. 81, no. 17, pp. 9238–9248. doi: 10.1128/JVI.00893-07
  10. Takeuchi O., Akira S. Innate immunity to virus infection. Immunol. Rev., 2009, vol. 363, pp. 2036–2044. doi: 10.1111/j.1600065X.2008.00737.x
  11. Tuvim V.I., Gilbert B.E., Dickey B.F., Evans S.E. Synergistic TLR2/6 and TLR9 activation protects mice against lethal influenza pneumonia. PLoS One, 2012, vol. 7, no. 1: e30596. doi: 10.1371/journal.pone.0030596
  12. Zhou B., Li Y., Speer S.D., Subba A., Lin X., Wentworth D.E. Engineering temperature sensitive live attenuated influenza vaccines from emerging viruses. Vaccine, 2012, vol. 30, no. 24, pp. 3691–3702. doi: 10.1016/j.vaccine.2012.03.025

Supplementary files

There are no supplementary files to display.


Copyright (c) 2020 Markushin S.G., Akhmatova N.K., Stolpnikova V.N., Akopova I.I., Rtishchev A.A., Kalinichenko E.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies