Salmonella-induced changes in the level of key immunoregulatory bacteria affect the transcriptional activity of the Foxp3 and RORgt genes in the gut-associated lymphoid tissue of rats

Cover Page

Cite item

Abstract

Intestinal microbes involved in many physiological processes owner, contributes to the formation and maintenance of immune homeostasis by regulating immune responses to protect against colonization by pathogens. A special role in the differentiation of various subpopulations of T-lymphocytes play the segmental filamentous bacteria (Segmented filamentous bacteria, SFB), capable of inducing a gut-associated lymphoid tissue (GALT) differentiation proinflammatory Th17-cells and members of the genus Clostridium (cluster IV and XIVa) and Bacteroides fragilis (polysaccharide A [PSA]), stimulating the formation of regulatory T-cells (Treg) and production of suppressor of cytokine IL-10. Important metabolites of B. fragilis are short-chain fatty acids (SCFA), which are able to activate GALT cells through the FFAR2 receptor. Lowering of the SCFA concentration leads to the reduction of the number of Treg in the intestine and breaks Th17/Treg balance. These changes lead to direct reducing of mRNA FFAR2, Foxp3 expression and increasing in RORyt GALT. Therefore, the goal was to determine the level of the key in the edge immunoregulatory bacteria intestinal microflora rats and their effects on the transcriptional activity of the genes Foxp3 and RORyt in GALT with Salmonella-induced inflammation and during administration of vancomycin and B. fragilis. To determine the genus and species of bacteria, as well as their number in the microflora of rats, was used the method of polymerase chain reaction (PCR-RV) with their identification by 16S rDNA genes. To study the transcriptional activity of genes using polymerase chain reaction reverse transcription real-time (RT-PCR). During the experiment with the introduction of animals vancomycin and Salmonella there was an increase in the level of SFB and a decrease in A. muciniphila, F. prausnitzii. Also, during infecting rats with S. Enteritidis and S. Typhimurium on the background of pre-treatment with vancomycin, there was an increase in the number of SFBs against the background of a pronounced decrease in Bacteroides—Prevotela group, A. muciniphila, Clostridium spp. clusters XIV, IV, and F. prausnitzii, which led to a decrease in the expression level of Foxp3+ mRNA and an increase in RORyt+, respectively. However, administration of B. fragilis to animals receiving S. Enteritidis or S. Typhimurium against pretreatment with vancomycin caused a decrease in the level of SFB and mRNA RORyt+, and, conversely, increased the number of Bacteroides—Prevotela group, A. muciniphila, Clostridium spp. clusters XIV, IV, F. prausnitzii and expression of Foxp3+ genes, which indicates the restoration of the homeostasis of the intestinal microbiome. The obtained results showed that B. fragilis can be successfully used in the treatment of inflammatory bowel diseases or diseases with impaired intestinal barrier function.

About the authors

Yu. V. Bukina

Zaporozhye State Medical University

Email: lingvus25@gmail.com
ORCID iD: 0000-0001-9529-3798

Yuliia V. Bukina - Assistant Professor, Microbiology, Virology and Immunology Department.

69035, Ukraina, Zaporozhye, pr. Majakovskogo, 26, Phone: +38 096 400-46-26; +38 095 512-09-29

Ukraine

L. Ya. Fedoniuk

Ternopil State Medical University

Email: Fedonyuk22Larisa@gmail.com

PhD, MD (Medicine), Professor, Head of Medical Biology Department.

Ternopil Ukraine

G. D. Koval

Bukovinian State Medical University

Email: koval.halyna@bsmu.edu.ua

PhD, MD (Medicine), Professor of Clinical Immunology, Allergology and Endocrinology Department.

Chernovtsy

Ukraine

Yu. O. Shekhovtsova

Kharkiv National Medical University

Author for correspondence.
Email: agagroup@ukr.net
ORCID iD: 0000-0002-7528-6627

PhD (Medicine), Assistant Professor, Department of Internal Medicine and Endocrinology.

Kharkiv

Ukraine

A. M. Kamyshnyi

Zaporozhye State Medical University

Email: alexkamyshnyi@gmail.com

PhD, MD (Medicine), Professor, Head of Microbiology, Virology and Immunology Department.

Zaporozhye

Ukraine

A. O. Gubar

Zaporozhye State Medical University

Email: gubar1405@ukr.net

PhD (Medicine), Associate Professor, Urology Department.

Zaporozhye

Ukraine

V. O. Gubka

Zaporozhye State Medical University

Email: gubka@zsmu.zp.ua

PhD, MD (Medicine), Associate Professor, Professor of Hospital Surgery Department.

Zaporozhye

Ukraine

References

  1. Букина Ю.В., Камышный А.М., Полищук Н.Н., Топол И.А. Сальмонелла-индуцированные изменения кишечной микробиоты и транскриптома генов иммунного ответа на фоне введения ванкомицина и Bacteroides fragilis // Патолопя. 2017. Т. 14, № 1 (39). С. 12-19.
  2. Agbor T.A., McCormick B.A. Salmonella effectors: important players modulating host cell function during infection. Cell Microbiol., 2011, vol. 13,pp. 1858-1869. doi: 10.1111/j.1462-5822.2011.01701.x
  3. Arpaia N., Campbell C., Fan X. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, vol. 504, pp. 451-455. doi: 10.1038/nature12726
  4. Atarashi K., Tanoue T., Ando M., Kamada N., Nagano Y. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell, 2015, vol. 163,pp. 367-380. doi: 10.1016/j.cell.2015.08.058
  5. Atarashi K., Tanoue T., Oshima K., Suda W., Nagano Y., Nishikawa H., Fukuda S., Saito T., Narushima S., Hase K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, 2013, vol. 500, pp. 232-236. doi: 10.1038/nature12331
  6. Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G., Yamasaki S., Saito T., Ohba Y., Taniguchi T., Takeda K., Hori S., Ivanov I.I., Umesaki Y., Itoh K., Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 2011, vol. 331, pp. 337-341. doi: 10.1126/science.1198469
  7. Behnsen J., Perez-Lopez A., Nuccio S.P., Raffatellu M. Exploiting host immunity: the Salmonella paradigm. Trends Immunol., 2015, vol. 36, pp. 112-120. doi: 10.1016/j.it.2014.12.003
  8. Breyner N.M., Michon C., de Sousa C.S., Vilas Boas P.B., Chain F., Azevedo V.A., Langella P., Chatel J.M. Microbial antiinflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-kB pathway. Front. Microbiol., 2017, vol. 8:114. doi: 10.3389/fmicb.2017.00114
  9. Bukina Yu.V., Varynskyi B.O., Voitovich A.V., Koval G.D., Kaplaushenko A.G., Kamyshnyi O.M. The definition of neutrophil extracellular traps and the concentration of short-chain fatty acids in salmonella-induced inflammation of the intestine against the background of vancomycin and bacteroides fragilis. Pathology, 2018, vol. 15, no. 1 (42), pp. 10—17.
  10. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, vol. 505, pp. 559—563. doi: 10.1038/nature12820
  11. Dubourg G., Lagier J.C., Armougom F., Robert C., Audoly G., Papazian L. High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment. Int. J. Antimicrob. Agents, 2013, vol. 41, pp. 149—155. doi: 10.1371/journal.pone.0095476
  12. Ferreira-Halder C.V., Faria A.V.S., Andrade S.S. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract. Res. Clin. Gastroenterol., 2017, vol. 6,pp. 643—648. doi: 10.1016/j.bpg.2017.09.011
  13. Feuerer M., Hill J.A., Kretschmer K., von Boehmer H., Mathis D., Benoist C. Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proc. Natl. Acad. Science USA, 2010, vol. 107, pp. 5919—5924. doi: 10.1073/pnas.1002006107
  14. Furusawa Y., Obata Y., Fukuda S. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013, vol. 504, pp. 446—450. doi: 10.1038/nature12721
  15. Geuking M.B., Cahenzli J., Lawson M.A., Ng D.C., Slack E., Hapfelmeier S., McCoy K.D., Macpherson A.J. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity, 2011, vol. 34, pp. 794—806. doi: 10.1016/j.immu-ni.2011.03.021
  16. Geva-Zatorsky N., Sefik E., Kua L., Pasman L., Tan T.G., Ortiz-Lopez A., Yanortsang T.B., Yang L., Jupp R., Mathis D., Benoist C., Kasper D.L. Mining the human gut microbiota for immunomodulatory organisms. Cell, 2017, vol. 168, no. 5, pp. 928943. doi: 10.1016/j.cell.2017.01.022
  17. Goto Y., Umesaki Y., Benno Y., Kiyono H. Epithelial glycosylation in gut homeostasis and inflammation. Nat. Immunol., 2016, vol. 17, no. 11, pp. 1244-1251. doi: 10.1038/ni.3587
  18. Honda K., Littman D.R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol., 2012, vol. 30, pp. 759795. doi: 10.1146/annurev-immunol-020711-074937
  19. Hooper L.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science, 2012, vol. 336, no. 6086, pp. 1268-1273. doi: 10.1126/science.1223490
  20. Ivanov I.I., Atarashi K., Manel N., Brodie E.L., Shima T., Karaoz U., Wei D., Goldfarb K.C., Santee C.A., Lynch S.V., Tanoue T., Imaoka A., Itoh K., Takeda K., Umesaki Y., Honda K., Littman D.R. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 2009, vol. 139,pp.485-498. doi: 10.1016/j.cell.2009.09.033
  21. Keestra-Gounder A.M., Tsolis R.M., Baumler A.J. Now you see me, now you don’t: the interaction of Salmonella with innate immune receptors. Nat. Rev. Microbiol., 2015, vol. 13, pp. 206-216. doi: 10.1038/nrmicro3428
  22. Korpela K., Flint H.J., Johnstone A.M., Lappi J., Poutanen K., Dewulf E. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS One, 2014, vol. 9 (6): e90702. doi: 10.1371/journal.pone.0090702
  23. Lathrop S.K., Bloom S.M., Rao S.M., Nutsch K., Lio C.W., Santacruz N., Peterson D.A., Stappenbeck T.S., Hsieh C.S. Peripheral education of the immune system by colonic commensal microbiota. Nature, 2011, vol. 478, pp. 250-254. doi: 10.1038/nature10434
  24. Li J., Lin S., Vanhoutte P.M., Woo C.W., Xu A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in apoe-/-mice. Circulation, 2016, vol. 133, pp. 2434-2446. doi: 10.1038/nature10434
  25. Littman D.R., Rudensky A.Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell, 2010, vol. 140, pp. 845-858. doi: 10.1016/j.cell.2010.02.021
  26. Lopetuso L.R., Scaldaferri F., Petito V., Gasbarrini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog, 2013, vol. 5(1): 23. doi: 10.1186/1757-4749-5-23
  27. Nagano Y., Itoh K., Honda K. The induction of Treg cells by gut-indigenous Clostridium. Curr. Opin. Immunol., 2012, vol. 24, pp. 392-397. doi: 10.1016/j.coi.2012.05.007
  28. Ochoa-Reparaz J., Mielcarz D.W., Wang Y., Begum-Haque S., Dasgupta S. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol., 2010, vol. 3, pp. 487-495. doi: 10.1038/mi.2010.29
  29. Ost K.S., Round J.L. Communication between the microbiota and mammalian immunity. Annu. Microbiol. Rev., 2018, vol. 72, pp. 399- 422. doi: 10.1146/annurev-micro-090817-062307
  30. Pickard J.M., Zeng M.Y., Caruso R., Nunez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev, 2017, vol. 279, no. 1, pp. 70-89. doi: 10.1111/imr.12567
  31. Plovier H., Everard A., Druart C., Depommier C., Van Hul M., Geurts L., Chilloux J., Ottman N., Duparc T., Lichtenstein L., Myridakis A., Delzenne N.M., Klievink J., Bhattacharjee A., van der Ark K.C., Aalvink S., Martinez L.O., Dumas M.E., Maiter D., Loumaye A., Hermans M.P., Thissen J.P., Belzer C., de Vos W.M., Cani P.D. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med., 2017, vol. 1, pp. 107-113. doi: 10.1038/nm.4236
  32. Quevrain E., Maubert M.A., Michon C., Chain F., Marquant R. Identification of an antiinflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut, 2016, vol. 65, pp. 415-425. doi: 10.1136/gutjnl-2014-307649
  33. Round J.L., Mazmanian S .K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Science USA, 2010, vol. 107, pp. 12204-12209. doi: 10.1073/pnas.0909122107
  34. Sano T., Huang W., Hall J.A., Yang Y., Chen A. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell, 2015, vol. 163, pp. 381-393. doi: 10.1016/j.cell.2015.08.061
  35. Shin N.R., Lee J.C., Lee H.Y., Kim M.S., Whon T.W., Lee M.S. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 2014, vol. 63, pp. 727—735. doi: 10.1136/gutjnl-2012-303839
  36. Smith P.M., Howitt M.R., Panikov N. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 2013, vol. 341, no. 6145, pp. 569—573. doi: 10.1126/science.1241165
  37. Sorini C., Cardoso R.F., Gagliani N., Villablanca E.J. Commensal bacteria-specific CD4+ T cell responses in health and disease. Front. Immunol., 2018, vol. 9:2667. doi: 10.3389/fimmu.2018.02667
  38. Tan T.G., Sefik E., Geva-Zatorsky N., Kua L., Naskar D., Teng F., Pasman L., Ortiz-Lopez A., Jupp R., Wu H.J. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc. Natl. Acad. Sci. USA, 2016, vol. 113, pp. 8141-8150. doi: 10.1073/pnas.1617460113
  39. Telesford K.M., Yan W., Ochoa-Reparaz J., Pant A., Kircher C., Christy M.A., Begum-Haque S., Kasper D.L., Kasper L.H. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function. Gut Microbes,, 2015, vol. 6, pp. 234-242. doi: 10.1080/19490976.2015.1056973
  40. Yang Y., Torchinsky M.B., Gobert M., Xiong H., Xu M. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature, 2014, vol. 510, pp. 152-156. doi: 10.1038/nature13279
  41. Zheng Y., Valdez P.A., Danilenko DM., Hu Y., Sa S.M., Gong Q., Abbas A.R., Modrusan Z., Ghilardi N., de Sauvage F.J., Ouyang W. Interleukin 22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med., 2008, vol. 14, pp. 282-289. doi: 10.1038/nm1720
  42. Zhou L., Zhang M., Wang Y., Dorfman R.G., Liu H., Yu T., Chen X., Tang D., Xu L., Yin Y., Pan Y., Zhou Q., Zhou Y., Yu C. Faecalibacterium prausnitzii Produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase. Inflamm. Bowel Dis., 2018, vol. 24, iss. 9, pp. 1926-1940. doi: 10.1093/ibd/izy182

Copyright (c) 2020 Bukina Y.V., Fedoniuk L.Y., Koval G.D., Shekhovtsova Y.O., Kamyshnyi A.M., Gubar A.O., Gubka V.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies