Mechanisms of interacting Helicobacter pylori with gastric mucosal epithelium. II. A reaction of gastric epithelium on Helicobacter pylori colonization and persistence

Cover Page

Cite item


Gastric and duodenal recurrent inflammatory diseases have a high prevalence, but the role played by microbes in its development remained unclear. However, the data published in 1983 by Marshall and Warren about isolating Helicobacter pylori from the stomach mucosa of the patient with gastritis and proposing relevant cultivation methods was the turning point in investigating etiology of the upper digestive tract inflammatory disorders. Moreover, it was shown that the majority of H. pylori spp. are found within the gastric lumen upon colonization, whereas around 20% of them are attached to the epithelial cells in the stomach. In addition, effects of interacting H. pylori with gastric epithelium and activation of some defense mechanisms due to bacterial colonization and spreading were analyzed. It was found that along with triggering pro-inflammatory response induced by proteins VacA as well as phosphorylated/unphosphorylated CagA, wherein the latter is able to induce a set of protective reactions H. pylori disrupts intercellular contacts, affects epithelial cell polarity and proliferation, and activates SHP-2 phosphatase resulting in emerging diverse types of cellular responses. The activation mechanisms for the mitogen-activated protein kinase (MAPK) pathway were discussed. The ability of H. pylori to regulate apoptosis, particularly via its suppression, by expressing ERK kinase and protein MCL1 facilitating bacterial survival in the gastric mucosa as well as beneficial effects related to bacterial circulation on gastric epithelial cell survival elicited by anti-apoptotic factors were also examined. Of note, persistence of H. pylori are mainly determined by activating transcriptional factors including NF-κB, NFAT, SRF, T-cell lymphoid enhancing factor (TCF/LEF), regulating activity of MCL1 protein, in turn, being one of the main anti-apoptotic factors, as well as induced production of the migration inhibitory factor (MIF). The role of VacA cytotoxin in triggering epithelial cell apoptosis via caspase-mediated pathways was also considered. Infection with H. pylori is accompanied by release of proinflammatory cytokine cocktail detected both in vitro and in vivo. In particular, bacterial urease activating transcriptional factor NF-κB was shown to play a crucial role in inducing cytokine production. Moreover, such signaling pathways may be activated after H. pylori is attached to the cognate receptor in the gastric epithelial surface by interacting with CD74 and MHC class II molecules. Finally, a role for various CD4+ T cell subsets, particularly type 17 T helper cells (Th17) in inducing immune response against H. pylori antigens in gastric mucosa was revealed were also discussed. 

About the authors

O. K. Pozdeev

Kazan State Medical Academy — Branch Campus of the Russian Medical Academy of Continuous Professional Education

Author for correspondence.

PhD, MD (Medicine), Professor, Head of the Department of Microbiology

Contacts: Oskar K. Pozdeev, 420012, Russian Federation, Kazan, Butlerova str., 36, Kazan State Medical Academy

Russian Federation

A. O. Pozdeeva

Kazan State Medical Academy — Branch Campus of the Russian Medical Academy of Continuous Professional Education

Assistant of the Department of Therapy and Family Medicine Russian Federation

Yu. V. Valeeva

Kazan (Volga region) Federal University

PhD (Medicine), Associate Professor, Department of Emergency Medical Care and Simulatory Medicine Russian Federation

P. E. Gulyaev

Kazan State Medical University

Assistant of the Department of Microbiology Russian Federation

A. N. Savinova

Kazan State Medical University

PhD (Biology), Associate Professor, Department of Microbiology Russian Federation


  1. Поздеев О.К., Поздеева А.О., Валеева Ю.В., Гуляев П.Е. Механизмы взаимодействия Helicobacter pylori c эпителием слизистой оболочки желудка. I. Факторы патогенности, способствующие успешной колонизации // Инфекция и иммунитет. 2018. Т. 8, № 3. С. 273–283. doi: 10.15789/2220-7619-2018-3-273-283
  2. Al-Daccak R., Mooney N., Charron D. MHC class II signaling in antigen-presenting cells. Curr. Opin. Immunol., 2004, vol. 16, no. 1, pp. 108–113. doi: 10.1016/j.coi.2003.11.006
  3. Amieva M.R., El-Omar E.M. Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology, 2008, vol. 134, no. 1, pp. 306–323. doi: 10.1053/j.gastro.2007.11.009
  4. Amieva M.R., Vogelmann R., Covacci A., Tompkins L.S., Nelson W.J., Falkow S. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science, 2003, vol. 300, no. 5624, pp. 1430–1434. doi: 10.1126/science.1081919
  5. Ashktorab H., Dashwood R.H., Dashwood M.M., Zaidi S.I., Hewitt S.M., Green W.R., Lee E.L., Daremipouran M., Nouraie M., Malekzadeh R., Smoot D.T. H. pylori-induced apoptosis in human gastric cancer cells mediated via the release of apoptosis-inducing factor from mitochondria. Helicobacter, 2008, vol. 13, no. 6, pp. 506–517. doi: 10.1111/j.1523-5378.2008.00646.x
  6. Bagnoli F., Buti L., Tompkins L., Covacci A., Amieva M.R. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 45, pp. 16339–16344. doi: 10.1073/pnas.0502598102
  7. Barrera C.A., Beswick E.J., Sierra J.C., Bland D., Espejo R., Mifflin R., Adegboyega P., Crowe S.E., Ernst P.B. Polarized expression of CD74 by gastric epithelial cells. J. Histochem. Cytochem., 2005, vol. 53, no. 12, pp. 1481–1489. doi: 10.1369/jhc.4A6552.2005
  8. Beswick E.J., Bland D.A., Suarez G., Barrera C.A., Fan X.J., Reyes V.E. Helicobacter pylori binds to CD74 on gastric epithelial cells and stimulates interleukin-8 production. Infect. Immun., 2005, vol. 73, no. 5, pp. 2736–2743. doi: 10.1128/IAI.73.5.27362743.2005
  9. Beswick E.J., Pinchuk I.V., Minch K., Suarez G., Sierra J.C., Yamaoka Y., Reyes V.E. The Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-kappaB activation and interleukin-8 production. Infect. Immun., 2006, vol. 74, no. 2, pp. 1148–1155. doi: 10.1128/IAI.74.2.1148-1155.2006
  10. Beswick E.J., Pinchuk I.V., Suarez G., Sierra J.C., Reyes V.E. Helicobacter pylori CagA-dependent macrophage migration inhibitory factor produced by gastric epithelial cells binds to CD74 and stimulates procarcinogenic events. J. Immunol., 2006, vol. 176, no. 11, pp. 6794–6801. doi: 10.4049/jimmunol.176.11.6794
  11. Chang Y.J., Wu M.S., Lin J.T., Pestell R.G., Blaser M.J., Chen C.C. Mechanisms for Helicobacter pylori CagA-induced cyclin D1 expression that affect cell cycle. Cell. Microbiol., 2006, vol. 8, no. 11, pp. 1740–1752. doi: 10.1111/j.1462-5822.2006.00743.x
  12. Churin Y., Al-Ghoul L., Kepp O., Meyer T.E., Birchmeier W., Naumann M. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J. Cell. Biol., 2003, vol. 161, no. 2, pp. 249–255. doi: 10.1083/jcb.200208039
  13. Crabtree J.E., Farmery S.M., Lindley I.J., Figura N., Peichl P., Tompkins D.S. CagA/cytotoxic strains of Helicobacter pylori and interleukin-8 in gastric epithelial cell lines. J. Clin. Pathol., 1994, vol. 47, no. 10, pp. 945–950. doi: 10.1136/jcp.47.10.945
  14. Crabtree J.E., Naumann M. Epithelial cell signaling in Helicobacter pylori infection. Curr. Signal Transd., 2006, vol. 1, no. 1, pp. 53–65. doi: 10.2174/157436206775269253
  15. Crabtree J.E., Shallcross T.M., Heatley R.V., Wyatt J.I. Mucosal tumour necrosis factor alpha and interleukin-6 in patients with Helicobacter pylori associated gastritis. Gut, 1991, vol. 32 , no. 12, pp. 1473–1477. doi: 10.1136/gut.32.12.1473
  16. Crabtree J.E., Wyatt J.I., Trejdosiewicz L.K., Peichl P., Nichols P.H., Ramsay N., Primrose J.N., Lindley I.J.D. Interleukin-8 expression in Helicobacter pylori infected, normal, and neoplastic gastroduodenal mucosa. J. Clin. Pathol., 1994, vol. 47, no. 1, pp. 61–66. doi: 10.1136/jcp.47.1.61
  17. De Guzman B.B., Hisatsune J., Nakayama M., Yahiro K., Wada A., Yamasaki E., Nishi Y., Yamazaki S., Azuma T., Ito Y., Ohtani M., van der Wijk T., den Hertog J., Moss J., Hirayama T. Cytotoxicity and recognition of receptor-like protein tyrosine phosphatases, RPTPalpha and RPTPbeta, by Helicobacter pylori m2VacA. Cell. Microbiol., 2005, vol. 7, no. 9, pp. 1285–1293. doi: 10.1111/j.1462-5822.2005.00556.x
  18. Fan X., Crowe S.E., Behar S., Gunasena H., Ye G., Haeberle H., Van Houten N., Gourley W.K., Ernst P.B., Reyes V.E. The effect of class II major histocompatibility complex expression on adherence of Helicobacter pylori and induction of apoptosis in gastric epithelial cells: a mechanism for T helper cell type 1-mediated damage. J. Exp. Med., 1998, vol. 187, no. 10, pp. 1659–1669. doi: 10.1084/jem.187.10.1659
  19. Fan X., Gunasena H., Cheng Z., Espejo R., Crowe S.E., Ernst P.B., Reyes V.E. Helicobacter pylori urease binds to class II MHC on gastric epithelial cells and induces their apoptosis. J. Immunol., 2000, vol. 165, no. 4, pp. 1918–1924. doi: 10.4049/jimmunol.165.4.1918
  20. Fischer W., Prassl S., Haas R. Virulence mechanisms and persistence strategies of the human gastric pathogen Helicobacter pylori. Curr. Top. Microbiol. Immunol., 2009, vol. 337, pp. 129–171. doi: 10.1007/978-3-642-01846-6_5
  21. Higashi H., Tsutsumi R., Muto S., Sugiyama T., Azuma T., Asaka M., Hatakeyama M. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 2002, vol. 295, no. 5555, pp. 683–686. doi: 10.1126/science.1067147.
  22. Ishiguro Y., Ohkawara T., Sakuraba H., Yamagata K., Hiraga H., Yamaguchi S., Fukuda S., Munakata A., Nakane A., Nishihira J. Macrophage migration inhibitory factor has a proinflammatory activity via the p38 pathway in glucocorticoid-resistant ulcerative colitis. Clin. Immunol., 2006, vol. 120, no. 3, pp. 335–341. doi: 10.1016/j.clim.2006.05.010
  23. Iwai H., Kim M., Yoshikawa Y., Ashida H., Ogawa M., Fujita Y., Muller D., Kirikae T., Jackson P.K., Kotani S., Sasakawa C. A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell, 2007, vol. 130, no. 4, pp. 611–623. doi: 10.1016/j.cell.2007.06.043
  24. Jung H.C., Kim J.M., Song I.S., Kim C.Y. Helicobacter pylori induces an array of pro-inflammatory cytokines in human gastric epithelial cells: quantification of mRNA for interleukin-8, -1 alpha/beta, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1 and tumour necrosis factor-alpha. J. Gastroenterol. Hepatol., 1997, vol. 12, no. 7, pp. 473– 480. doi: 10.1111/j.1440-1746.1997.tb00469.x
  25. Kabir S. The role of interleukin-17 in the Helicobacter pylori induced infection and immunity. Helicobacter, 2011, vol. 16, no. 1, pp. 1–8. doi: 10.1111/j.1523-5378.2010.00812.x
  26. Keates S., Keates A.C., Warny M., Peek R.M. Jr, Murray P.G., Kelly C.P. Differential activation on of mitogen-activated protein kinases in AGS gastric ati epithelial cells by cag+ and cag– Helicobacter pylori. J. Immunol., 1999, vol. 163, no. 10, pp. 5552–5559.
  27. Lu H., Murata-Kamiya N., Saito Y., Hatakeyama M. Role of partitioning-defective 1/microtubule affinity-regulating kinases in the morphogenetic activity of Helicobacter pylori CagA. J. Biol. Chem., 2009, vol. 284, no. 34, pp. 23024–23036. doi: 10.1074/jbc.M109.001008
  28. Lu H., Wu J.Y., Kudo T., Ohno T., Graham D.Y., Yamaoka Y. Regulation of interleukin-6 promoter activation in gastric epithelial cells infected with Helicobacter pylori. Mol. Biol. Cell, 2005, vol. 16, no. 10, pp. 4954–4966. doi: 10.1091/mbc.E05-05-0426
  29. Matsushima K., Shiroo M., Kung H.F., Copeland T.D. Purification and characterization of a cytosolic 65-kilodalton phosphoprotein in human leukocytes whose phosphorylation is augmented by stimulation with interleukin 1. Biochemistry, 1988, vol. 27, no. 10, pp. 3765–3770. doi: 10.1021/bi00410a037
  30. Mimuro H., Suzuki T., Nagai S., Rieder G., Suzuki M., Nagai T., Fujita Y., Nagamatsu K., Ishijima N., Koyasu S., Haas R., Sasakawa C. Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe, 2007, vol. 2, no. 4, pp. 250–263. doi: 10.1016/j.chom.2007.09.005
  31. Mimuro H., Suzuki T., Tanaka J., Asahi M., Haas R., Sasakawa C. Grb2 is a key mediator of helicobacter pylori CagA protein activities. Mol. Cell, 2002, vol. 10, no. 4, pp. 745–755. doi: 10.1016/S1097-2765(02)00681-0
  32. Mitchell R.A., Liao H., Chesney J., Fingerle-Rowson G., Baugh J., David J., Bucala R. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl. Acad. Sci. USA, 2002, vol. 99, no. 1, pp. 345–350. doi: 10.1073/pnas.012511599
  33. Mizuno T., Ando T., Nobata K., Tsuzuki T., Maeda O., Watanabe O., Minami M., Ina K., Kusugami K., Peek R.M., Goto H. Interleukin-17 levels in Helicobacter pylori-infected gastric mucosa and pathologic sequelae of colonization. World J. Gastroenterol., 2005, vol. 11, no. 40, pp. 6305–6311. doi: 10.3748/wjg.v11.i40.6305
  34. Murata-Kamiya N., Kurashima Y., Teishikata Y., Yamahashi Y., Saito Y., Higashi H., Aburatani H., Akiyama T., Peek R.M., Azuma T., Hatakeyama M. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene, 2007, vol. 26, no. 32, pp. 4617–4626. doi: 10.1038/sj.onc.1210251
  35. Odenbreit S., Kavermann H., Püls J., Haas R. CagA tyrosine phosphorylation and interleukin-8 induction by Helicobacter pylori are independent from alpAB, HopZ and bab group outer membrane proteins. Int. J. Med. Microbiol., 2002, vol. 292, no. 3–4, pp. 257–266. doi: 10.1078/1438-4221-00205
  36. Olivares D., Gisbert J.P., Pajares J.M. Helicobacter pylori infection and gastric mucosal epithelial cell apoptosis. Rev. Esp. Enferm. Dig., 2005, vol. 97, no. 7, pp. 505–520.
  37. Oppenheim J.J., Zachariae C.O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu. Rev. Immunol., 1991, vol. 9, pp. 617–648. doi: 10.1146/annurev.iy.09.040191.003153
  38. Parsons J.T. Focal adhesion kinase: the first ten years. J. Cell. Science, 2003, vol. 116, no. 8, pp. 1409–1416. doi: 10.1242/jcs.00373
  39. Pinchuk I.V., Morris K.T., Nofchissey R.A., Earley R.B., Wu J.Y., Ma T.Y., Beswick E.J. Stromal cells induce Th17 during Helicobacter pylori infection and in the gastric tumor microenvironment. PLoS One, 2013, vol. 8, no. 1, pp. e53798. doi: 10.1371/journal.pone.0053798
  40. Saadat I., Higashi H., Obuse C., Umeda M., Murata-Kamiya N., Saito Y., Lu H.S., Ohnishi N., Azuma T., Suzuki A., Ohno S., Hatakeyama M. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature, 2007, vol. 447, no. 7142, pp. 330–333. doi: 10.1038/nature05765
  41. Saberi S., Douraghi M., Azadmanesh K., Shokrgozar M.A., Zeraati H., Hosseini M.E., Mohagheghi M.A., Parsaeian M., Mohammadi M. A potential association between Helicobacter pylori CagA EPIYA and multimerization motifs with cytokeratin 18 cleavage rate during early apoptosis. Helicobacter, 2012, vol. 17, no. 5, pp. 350–357. doi: 10.1111/j.1523-5378.2012.00954.x
  42. Sebkova L., Pellicanò A., Monteleone G., Grazioli B., Guarnieri G., Imeneo M., Pallone F., Luzza F. Extracellular signal-regulated protein kinase mediates interleukin 17 (IL-17)-induced IL-8 secretion in Helicobacter pylori-infected human gastric epithelial cells. Infect. Immun., 2004, vol. 72, no. 9, pp. 5019–5026. doi: 10.1128/IAI.72.9.5019-5026.2004
  43. Shi Y., Liu X.F., Zhuang Y., Zhang J.Y., Liu T., Yin Z., Wu C., Mao X.H., Jia K.R., Wang F.J., Guo H., Flavell R.A., Zhao Z., Liu K.Y., Xiao B., Guo Y., Zhang W.J., Zhou W.Y., Guo G., Zou Q.M. Helicobacter pylori-induced Th17 responses modulate Th1 cell responses, benefit bacterial growth, and contribute to pathology in mice. J. Immunol., 2010, vol. 184, no. 9, pp. 5121–5129. doi: 10.4049/jimmunol.0901115
  44. Tan S., Tompkins L.S., Amieva M.R. Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche. PLoS Pathog., 2009, vol. 5, no. 5: e1000407. doi: 10.1371/journal.ppat.1000407
  45. Tanahashi T., Kita M., Kodama T., Yamaoka Y., Sawai N., Ohno T., Mitsufuji S., Wei Y.P., Kashima K., Imanishi J. Cytokine expression and production by purified Helicobacter pylori urease in human gastric epithelial cells. Infect. Immun., 2000, vol. 68, no. 2, pp. 664–671. doi: 10.1128/IAI.68.2.664-671.2000
  46. Wessler S., Backert S. Molecular mechanisms of epithelial-barrier disruption by Helicobacter pylori. Trends Microbiol., 2008, vol. 16, no. 8, pp. 397–405. doi: 10.1016/j.tim.2008.05.005
  47. Wessler S., Höcker M., Fischer W., Wang T.C., Rosewicz S., Haas R., Wiedenmann B., Meyer T.F., Naumann M. Helicobacter pylori activates the histidine decarboxylase promoter through a mitogen-activated protein kinase pathway independent of pathogenicity island-encoded virulence factors. J. Biol. Chem., 2000, vol. 275, no. 5, pp. 3629–3636. doi: 10.1074/jbc.275.5.3629
  48. Xia H.H., Talley N.J. Apoptosis in gastric epithelium induced by Helicobacter pylori infection: implications in gastric carcinogenesis. Am. J. Gastroenterol., 2001, vol. 96, no. 1, pp. 16–26. doi: 10.1016/S0002-9270(00)02240-1
  49. Xia Z., Dickens M., Raingeaud J., Davis R.J., Greenberg M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 1995, vol. 270, no. 5240, pp. 1326–1331. doi: 10.1126/science.270.5240.1326
  50. Xiong S., Mu T., Wang G., Jiang X. Mitochondria-mediated apoptosis in mammals. Protein Cell., 2014, vol. 5, no. 10, pp. 737–749. doi: 10.1007/s13238-014-0089-1
  51. Yokoyama K., Higashi H., Ishikawa S., Fujii Y., Kondo S., Kato H., Azuma T., Wada A., Hirayama T., Aburatani H., Hatakeyama M. Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 27, pp. 9661–9666. doi: 10.1073/pnas.0502529102

Copyright (c) 2019 Pozdeev O.K., Pozdeeva A.O., Valeeva Y.V., Gulyaev P.E., Savinova A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies