BJIOKEHUE CAA U AHTUT'EHHA# 3BOJIIOLIUA 10.15789/2220-7619-RAA-1968
RAAA ENCODING & ANTIGENIC EVOLUTION

REDUCED AMINO ACID ALPHABET-BASED ENCODING AND ITS
IMPACT ON MODELING INFLUENZA ANTIGENIC EVOLUTION

Forghani M.%,
Firstkov A. L2,
AlyanNezhadi M. M.°,
Danilenko D. M.¢,

Komissarov A. B.©

aN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the
Russian Academy of Sciences (IMM UB RAS), Yekaterinburg, Russia

® Mazandaran University of Science and Technology, Iran.

¢ Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia

KOJIMPOBAHME C MOMOIIBLIO COKPAIIEHHOTO
AMHUHOKHUCJOTHOTO AJIPABUTA M Er0 BJUSHUE HA
MOJIEJIMPOBAHUE AHTUTEHHO# DBOJIOLAN TPUTIIIA

®opranu M.,
®upcrios A. JI.!,
Ansaaemxaau M. M2,
Hanunernko JI. M3,

Komuccapos A. B.?

! ®enepanbHoe rocy1apCTBEHHOE OIOHKETHOE YIPEXKIEHHE HAyKH MHCTHTYT
maTemaTuku 1 Mexanuku uM. H. H. Kpacosckoro Ypaneckoro ornenenus
Poccuiickoit akanemun Hayk (MMM YpO PAH), Ekarepun0ypr, Poccus

>V HUBEpPCUTET HAYKH M TEXHOJOTUM Masannapana, Upaw.

3OI'BY  HayuHo-MCCIENOBAaTEeNbCKUM ~ MHCTMTYT  TpHONAa HMeHH  A.A.
CmopoauHueBa, Munsapasa Poccun.



BJIOKEHUE CAA U AHTUT'EHHA# 3BOJIIOLIUA 10.15789/2220-7619-RAA-1968
RAAA ENCODING & ANTIGENIC EVOLUTION

ABSTRACT. Currently, vaccination is one of the most efficient ways to
control and prevent influenza infection. Vaccine production largely relies on the
results of laboratory assays, including hemagglutination inhibition and
microneutralization assays, which are time-consuming and laborious. Viruses can
escape from the immune response that results in the need to revise and update
vaccines biannually. The hemagglutination inhibition assay can measure how
effectively antibodies against a reference strain bind and block an antigen of the test
strain. Various computer-aided models have been developed to optimize candidate
vaccine strain selection. A general problem in modeling of antigenic evolution is the
representation of genetic sequences for input into the research model. Our
motivation stems from the well-known problem of encoding genetic information for
modeling antigenic evolution. This paper introduces a two-fold encoding approach
based on reduced amino acid alphabet and amino acid index databases called
AAindex. We propose to apply a simplified amino acid alphabet in modeling of
antigenic evolution. A simplified alphabet, also called a sub-alphabet or reduced
amino acid alphabet, implies to use the 20 amino acids being clustered and divided
into amino acid groups. The proposed encoding allows to redefine mutations termed
for amino acid groups located in reduced alphabets. We investigated 40 reduced
amino acid sets and their performance in modeling antigenic evolution. The
experimental results indicate that the proposed reduced amino acid alphabets can
achieve the performance of the standard alphabet in its accuracy. Moreover, these
alphabets provide deeper insight into various aspects of the relationship between
mutation and antigenic variation. By checking identified high-impact sites in the
Influenza Research Database, we found that not only antigenic sites have a
significant influence on antigenicity, but also other amino acids located in close
proximity. The results indicate that all selected non-antigenic sites are related to
immune responses. According to the Influenza Research Database, these have been
experimentally determined to be T-cell epitopes, B-cell epitopes, and MHC-binding

epitopes of different classes. This highlighted a caveat: while simulating antigenic
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evolution, the model should consider not only the genetic information on antigenic
sites, but also that of neighboring positions, as they may indirectly impact
antigenicity. Additionally, our findings indicate that structural and charge
characteristics are the most beneficial in modeling antigenic evolution, which is in

agreement with previous studies.

Keywords: AAindex, antigenic evolution, hemagglutinin, influenza,

modeling, reduced amino acid alphabet

PE3IKOME. B nacrosiee Bpemsi, BAKIIMHAIUS SIBISIETCS OJTHUM U3 HauboJiee
3(pPEKTUBHBIX CHOCOOOB KOHTPOJIE U MPOMUIAKTUKUA TPUNNO3HOW HHEEKIHH.
[Ipon3BOJACTBO BaKIMH B OCHOBHOM 3aBHUCHUT OT PE3yJbTaTOB JIa0OpaTOpPHBIX
aHaJM30B, BKJIIOYas aHAJIU3 PEaKUUU TOPMOXKEHUS TIEeMarrIloTHHAUMU U
MUKpPOHEHTpaIH3aIii, KOTOpble TPEOYIOT MHOTO BpeMEeHH U Tpyaa. Bupycel MmoryT
n30eraTb UMMYHHOTO OTBETA, YTO MPHUBOJUT K HEOOXOJUMOCTH TEpecMoTpa U
OOHOBJICHUS BakKIMH JBa pa3a B TOA. AHAIW3 pEaKIUu TOPMOXKECHUS
reMarniroTHHALIMY MTO3BOJISIET U3MEPUTH, HACKOJBKO A(()EKTUBHO aHTHUTENIA POTUB
ATAJIOHHOTO IITaMMa CBSI3BIBAIOT U OJOKUPYIOT aHTUTEH HCIBITYEeMOTO IITaMMa.
Jlns onTuMu3and BeIOOpa BAaKIIMHHOTO INTaMMa-KaHAuAaTa OBLIN pa3pabOTaHBI
pa3IMyHble KOMIbIOTEpHBIE MoAenu. OiHa U3 oOLUX MPoOIeM B MOJACIUPOBAHUU
AHTUTEHHOMN HBOJIIOLIUU ABIISIETCS MPEACTABIICHHE TEHETUYECKUX
MOCJIEIOBATEILHOCTEN ISl BBOAA B MCCIIEIOBATENIBCKYIO MOieb. Hama MoTuBanus
CBsA3aHa C XOpOIIO W3BECTHOM MpOOJEeMON KOJUPOBAHUS T'E€HETUUYECKOU
uHOpMaIK I MOJEIMPOBAHUS AHTUTCHHOW HBoMONMH. B manHo# pabote
NpEeACTaBIeH JABYXATallHbIA TOAXOJ K KOAUPOBAHWIO, OCHOBAaHHBIM Ha
COKpAIIEHHBIX aMUHOKHUCJIOTHBIX alipaBuTax W 0a3ax MaHHBIX aMHHOKHCIOTHBIX
WHJIEKCOB 1o Ha3BaHueM AAindex. Mbl mpe/iaraem UCIOJIb30BaTh YIPOIICHHBIC

AMHWHOKHUCIJIOTHBIC aﬂ(i)aBI/ITBI oL MOACIUPOBAHUA AHTUTCHHOM 3BOJIFOITHUH.
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VYrpoméuueiii andaBut, Takke Ha3bIBaeMbIN CyOanaBUTOM WM COKPAIIEHHBIM
AMUHOKHCIIOTHBIM andaBuToM, 5370 andaButr, B KoTopoM 20 aMHHOKHUCIOT
paszesnieHsl Ha rpynisbl. [IpennokeHHoe KoAMpOBAHUE TO3BOJSET NEPEONPENEIIUTD
MyTallUM B TEPMHHAX TPYII AMUHOKHCIIOT, PACHOJOKEHHBIX B COKPAIIEHHOM
andasure. Mb1 uccnenonanu 40 cokpaméHubix andaBuToB U UX 3G(HEKTUBHOCTH
IIpU  MOJCIMPOBAHUM AHTUIEHHOM HJBOJMIOUMHU. Pe3ynprarsl SKCIEPUMEHTOB
MOKA3bIBAIOT, YTO TPEIIOKCHHBIC COKPAICHHBIE AMHUHOKHCIOTHBIE ali(haBUTHI
MOTYT JI0CTUYb MOKa3aTesel cTaniapTHoro andasuta no rTouHoctu. bosee Toro, atu
angaBUThl TO3BOJSIOT JIyYIll€ TOHSATh B3aUMOCBSI3b MEXKAY MYTalUSIMU U
AHTUTEHHBIMU W3MEHEHMSIMU C PA3JIUYHBIX TOUeK 3peHud. [I[poBepuB moiayyeHHbIE
BBICOKOA((DEKTUBHBIEC CAUTHI B UCCIIEA0BATEIbCKOM 0asze nanHbIx rpumnmna (Influenza
Research Database), Mbl OOHapyX WM, YTO HE TOJIBKO AHTUTCHHBIC CANTHI
OKa3bIBAIOT 3HAUUTEJIbHOE BIMSHUE HA AHTUTEHHOCTh, HO U HUX COCEIHUE
AMUHOKHUCIIOTHI. Pe3ynbTaThl MOKAa3bIBAIOT, YTO BCE BHIOPAHHBIE HEAHTUICHHBIE
YYaCTKU CBsI3aHbl C UMMYHHBIM OTBETOM. COINIaCHO HCCIIEAOBATENbCKOM 0Oa3bl
JAQHHBIX TPHINA, SKCIIEPUMEHTAJIBHO YCTAHOBIIEHO, YTO 3TO 3MMTOMNBI T-KIETOK,
snutonbl B-knetok ' MHC-cBsi3bIBatomue 3MUTONBI PA3JIUYHBIX KIJIACCOB. ITO
NOAYEPKUBAET 3HAYMMOCTH TOTO, YTO: MPU MOAECIHUPOBAHUN aHTUTEHHOMN 3BOJIIOIUN
MOJIeJIb JIOJDKHA YUYUTHIBATh HE TOJIBKO M€HETUYECKYH0 MH(POPMAIUI0 aHTUTCHHBIX
YYacTKOB, HO U TE€HETUYECKYI0 MH(POPMALIUIO COCEAHUX MO3UIIMM, TOCKOIbKY OHU
MOT'YT KOCBEHHO BJIMSTbh HAa AHTUI€HHOCTh. Kpome TOoro, Hamm pe3yiabTaTbl
MOKa3bIBAlOT, YTO, B COOTBETCTBUM C MPEABIAYIIMMU HCCIECIOBAHUSMU,
CTPYKTYpHBIC W 3apsIOBbIE XapaKTEPUCTHUKUA aMUHOKHUCIIOT SIBISIIOTCS HauOoliee

S3HAYUMBIMH IIPpU MOACIINPOBAHUU AHTUTCHHOM OBOJIIOIIHUH.

KaroueBbie cioBa: AAindex, aHTUTreHHAas SBOJIIOLMS, I'e€MarrJIOTHHUH,

TPUIIN, MOAECIUPOBAHUE, COKPAILIEHHBI aMUHOKUCIOTHBIN ai(aBUT
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INTRODUCTION. Influenza is a contagious respiratory infection that affects 5%-
15% of the population worldwide annually, resulting in 3-5 million cases of severe
illness and 250,000 to 500,000 deaths [36]. Influenza epidemics influence public
health and involve severe economic consequences, making it the subject of various
economic studies [4]. The World Health Organization (WHO) continuously
monitors viral pathogens, especially those that can become epidemics or pandemics,
and decides on strategies to combat them. Given the special status of influenza, the
WHO created the Global Influenza Surveillance and Response System, the primary
function of which is to monitor the evolution of the influenza virus and to provide
recommendations for the annual vaccine's composition for the Northern and
Southern Hemispheres.

Influenza viruses are part of the Orthomyxoviridae family.
According to antigenic characteristics of their nuclear proteins, they are grouped into
four types: IVA (A); IVB (B); IVC (C); and IVD (D). Among them, types A and B
are associated with influenza outbreaks. Type C appears to evolve slowly and leads
to less severe and less significant health consequences. Type D is an influenza C-
like virus that is observed in non-human hosts, e.g., cattle and swine [30]. Type A is
further classified according to the combination of hemagglutinin (HA) and
neuraminidase (NA), the two main surface antigens of influenza that play a key role
in infectivity and immune responses. HA has 18 variants (H1-H18), while the NA
protein can be one of 11 variants (N1-N11). Hence, the virus can theoretically be
any of 198 different subtypes; this provides an ability to infect a broad spectrum of
various hosts [37]. Despite this diversity, humans are infected with only a limited
number of influenza A subtypes (i.e., HIN1, H2N2, H3N2), with HIN1 and H3N2
being currently relevant. Thus, we consider them in this paper. Other zoonotic

subtypes represent only sporadic infections and are out of the scope of this study.

Influenza A viruses are capable of enormous genetic variation, both through

continuous, gradual mutation and by reassortment of gene segments between
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viruses, resulting in emerging novel antigenic variants. Epidemics are the result of
gradual evolutionary changes called antigenic drift, which leads to the generation of
new strains from existing ones through mutation. In addition to antigenic drift, the
influenza virus can be altered by antigenic shift. It is an abrupt significant change in
influenza viruses resulting in the emergence of new HA and/or NA. It is the process
by which at least two subtypes combine into a new subtype that has a mixture of

surface antigens of two or more strains [35].

The only effective method to control influenza is vaccination, eliciting
protective neutralizing antibodies and memory T-cell responses. Since HA antigen
abundance on the viral surface is approximately four-fold greater than NA [31], it is
the primary component in vaccine compositions. This is the reason why we consider

only HA protein sequences in this paper.

The influenza vaccine requires an update if the vaccine composition strains
are antigenically distinct from currently circulating viruses. A gold-standard and
widespread laboratory procedure called hemagglutination inhibition (HI) assay is
used to assess the measure of antigenic similarity between strains. The HI assay can
measure how effectively antibodies against a reference strain bind and block an
antigen of the test strain. High HI titers indicate a high degree of antigenic similarity
between strains [16]. The main conclusion of HI assay analysis is determining
antigenic distance (i.e., similarity between reference and test antigens), which
further can be presented in terms of a binary variable called antigenic variant.
Currently, there are two widely used definitions of antigenic distance [18, 27]:

M
d,(is j) = logy(——

(1)

2)
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where i/ is the obtained HI titer for antiserum of (reference) strain j against the
antigen of (test) strain i, and M is the maximum titer observed for antiserum j against
any antigen in the HI table. The antigenic variant is determined by applying the
threshold to the obtained antigenic distance. The pair of test and reference viruses
whose antigenic distance meets the threshold are designated as antigenic variants;

otherwise, they are only antigenically similar.

The HI assay is a labor-intensive and time-consuming procedure, while
vaccine development is under time pressure. Over the past decade, various
computer-aided approaches have been developed to speed up the process of strain
selection and to increase the quality of vaccine production. Klingten ef al. [16] has
provided a comprehensive review of antigenic evolution prediction associated with
vaccine production. They classified the approaches into phylogenetic and population
genetics-based methods, statistical methods, epidemiological models, and other
methods based on information and graph theories. The approaches employ different
data types serving as model inputs, e.g., viral sequence, HI assay data, protein
structure, physicochemical properties, etc. A critical step in antigenic variant
modeling is describing the biological significance of a mutation between test and

reference viruses and linking it to antigenicity.

Unfortunately, the exact roles and how they affect biological properties within
evolution are not yet fully understood for many such changes. Generally, it is known
that evolution is influenced by several biological properties, especially the volume
and hydrophobicity of amino acids [32]. Studies on amino acid property changes
provide fundamental information about the evolution of specific proteins. Earlier
studies indicated that HA antigen is positively charged, while on the contrary, the
glycan receptors of the host cell are negatively charged. Thus, changes in
electrostatic charge due to mutation can play a significant role in receptor specificity,
enhancing or diminishing the receptor binding affinity and avidity [2, 17]. Moreover,

Huang et al. [14] recently showed that charged amino acid mutations impact
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influenza virus evolution and are beneficial in vaccine research. Accordingly,
mutation can be considered a multidimensional event, wherein each dimension

represents an amino acid attribute.

Several techniques reflect the biological characteristics of mutation in
numerical domains, among which application of the AAindex database [15] is the
most popular. The AAindex database is a comprehensive collection of biological,
physical, and chemical amino acid properties collected from scientific papers and
accessed through www.genome.jp. The database mainly consists of three sections:
AAindex1; AAindex2; and AAindex3. AAindex1 includes various amino acid
indices, each of which can be represented as a numerical vector of 20 numbers
representing 20 standard amino acids. AAindex2 contains different amino acid
mutation matrices, while AAindex3 consists of statistical protein contact potentials.
The AAindex database (ver.9.2) currently covers 566, 94, and 47 records for
AAindex1, AAindex2, and AAindex3, respectively.

As mentioned, the AAindex database has been employed for encoding protein
sequence in various studies. Here, we mention some of the more relevant studies in
which the AAindex database was used for exploring genetic and antigenic evolution.
Yao et al. [39] proposed an algorithm called joint random forest regression to predict
antigenic variants. They compared 95 amino acid matrices, including AAindex2, to
assess the relationship between genetic and antigenic evolution by amino acid
attributes at different protein sites. Their results indicated that structural features are
more significant to the antigenicity of the influenza virus. Wang et al [34] suggested
an approach based on matrix completion for predicting antigenic evolution. They
studied the impact of 65 amino acid substitution matrices taken from the AAindex
database to predict antigenic evolution. Their results suggested that the “homologous
structure derived matrix (called HSDM) for alignment of distantly related

sequences”’ outperformed others in terms of RMSE.
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Moreover, Qui et al. [24] developed a structure-based antigenicity scoring
model. Their model engages antigenically dominant positions according to structural
context, including correlation with local amino acid attribute changes, to analyze
antigenicity. They demonstrated that incorporating the structural context of protein
can enhance antigenic evolution prediction. Additionally, Forghani and
Khachay [10] carried out a principal component analysis on AAindex] and
introduced 11 indices that explained 91% of the total variation in the database. The
new indices are further used to encode HA protein sequence and create an input
tensor fed into a convolutional neural network. Their model achieves a mean
absolute error of 0.935 antigenic units for yearly, non-anticipating prediction of
antigenic distance for subtype HIN1 (2001-2009). Cui et al. [6] suggested modeling
influenza virus antigenicity by selecting the most significant sites, clustering the
AAindex1 based on mutual information, and encoding the sites by the representative
from clusters to form the feature vector. The feature vector is further given to a
classifier to discretize antigenic variant classes. Recently, we performed a
preliminary analysis to study the impact of amino acid encoding on modeling the
antigenic evolution of the influenza virus [11]. Apart from Cui et al.’s work, our
work introduces an early-stage mutation encoding by applying reduced amino acid

alphabets.

The current paper addresses one of the fundamental challenges in
bioinformatics: deciding how to represent input genetic information for modeling
more efficiently and meaningfully. In response to this problem, we employed
simplified amino acid alphabets. A simplified alphabet, also called a sub-alphabet or
reduced amino acid alphabet (RAAA), is an alphabet in which the 20 amino acids
are clustered and divided into amino acids groups. RAAA construction is a problem
that belongs to the set partitioning problem, which is out of this paper's scope.
Previous studies have shown that RAAAs have been successfully applied in various

domains, including: protein annotation and description; protein functionality
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prediction [21,41]; protein folding assessment; sequence classification [19];

consensus sequence search; and genetic pattern identification [5].

A reduced amino acid set simplifies protein system complexity, providing a
better insight into structural similarities across protein sequences [42]. We
considered different definitions of similarity via RAAAs to reconstruct the
relationship between genotype and phenotype. A RAAA represents genetic
information on a coarse scale, which may highlight attributes that drive antigenic

evolution of the influenza virus.

In our approach, encoding is conducted in two steps. In addition to the
standard amino acid alphabet, the first step employs a RAAA to represent the
mutation in different structural, biological, and physicochemical contexts. Further,
the second step encodes the alphabetical information of the encoded genetic
sequence into a numerical one, which enables its use in various types of
mathematical modeling. Preliminary results indicate that some RAAA-based models

outperform models based on the standard amino acid alphabet in terms of accuracy.

In this paper, we take a step forward and perform a comprehensive analysis to

further refine result accuracy. The contributions of this paper are three-fold:

1. We propose a novel encoding method using reduced amino acid alphabets,

which helps to clarify the genetic/antigenic relationship.

2. Relative to similar previous studies [6, 11], we improve the approach at several

levels:
2.1. Increasing the resolution of thresholds.

2.2.  Clustering by several methods and comparing their results to find the

optimal number of clusters.
2.3. Selecting the closest index to the center of a cluster as its representative.

2.4.  Applying five well-known classification algorithms.
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2.5. Optimizing of classifier hyperparameters through a comprehensive grid

search.

3. Relying on experimental results, we found that incorporating structural and
charge properties can enhance modeling quality, which is in agreement with

previous studies.

The rest of the paper is organized as follows. Section II describes the general
computational pipeline, data preparation, and all necessary algorithms for primary
and secondary encoding. Experimental setup and its outcomes are presented in
Section III. This section also covers interpretation and discussion of the obtained

results. Finally, the conclusion is given in Section I'V.

II. METHODOLOGY

As mentioned earlier, our experimental design was inspired by a published
methodology [6]. However, we propose some modifications and enhancements to
improve modeling quality. Our approach is mainly divided into five steps: encoding
genetic sequences by RAAA; selecting the most relevant sites; clustering the
AAindex1 data set based on selected sites; encoding the selected sites by a
representative from each cluster; and modeling antigenic variants by a classifier. The

general schema of our pipeline is shown in Figure 1.

2.1. Data Preparation

Our approach relies on three database types, each of which requires specific

preparation in order to be used in the computational pipeline.

2.1.1. Simplified Amino Acid Alphabets
Apart from the standard amino acid alphabet with 20 letters, there are various
RAAAs, in which the number of letters is less than 20. Typically, an RAAA is

obtained by grouping the 20 amino acids. There are several strategies to perform



186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

BJIOKEHUE CAA U AHTUT'EHHA# 3BOJIIOLIUA 10.15789/2220-7619-RAA-1968
RAAA ENCODING & ANTIGENIC EVOLUTION

this, some of which have been described [29]. For example, the set of 20 amino acids
can be divided into three groups based on Van Der Waals volume by setting three
ranges (0-2.78, 2.95-4.00, 4.43-8.08), resulting in three partitions: GASCTPD;
NVEQIL; and MHKFRYW. This permits new interpretation of the mutation from a
different point of view, such as change in hydrophobicity. In total, 40 published
RAAAs were collected [8, 29, 38] and are presented in Table 1.

2.1.2. HI Assay Database

Typically, an HI assay database record includes three fields of information:
test virus identifier; reference antiserum identifier; and HI titer. Sometimes
additional metadata, such as experiment date, may be appended. HI assay results can
be presented in four forms: raw HI titer; standardized HI titer; antigenic distance;
and antigenic variant. At this point, we only used the antigenic variant obtained via
the antigenic distance threshold. We employed Eq. (1) with threshold 4 for
calculating the antigenic variant. Duplicated entries were averaged in terms of titer.
Therefore, each test/reference virus combination is unique within the database. Here,
we considered two subtypes in the influenza vaccine, HIN1 and H3N2. The HI assay
database was taken from references [13, 34]. The final obtained database had 7,449
H3N2 and 3,747 HIN1 entries. There were 506 viruses for the HIN1 subtype (506
test against 44 references) and 772 for H3N2 (666 test against 130 references).

2.1.3. AAindexl Database
The latest version of AAindex1, ver. 9.2, consists of 566 entries. A typical
database entry includes a vector of 20 numbers, each of which is assigned to a
standard amino acid. Since the range of numbers in vectors varies within the
database, we individually scaled each vector into the unit interval [0,1]. After

removing vectors with missing values, 553 remaining entries were used for analysis.

2.2. Encoding of HA Sequences

Here, we use RAAAs to take into account the impact of the mutation on

antigenic evolution from different physicochemical (amino acid) perspectives. The
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first step of encoding the sequence by RAAA is selecting an arbitrary amino acid
from each group in the alphabet as a group representative. Further, we replace all
members of the group with its representative in the protein sequence. This step does
not influence data if the standard amino acid alphabet is chosen since this alphabet

has 20 groups, not less.

2.3. Selection of High Impact Sites

The model’s input is a feature vector produced from encoded relevant sites in
the genetic sequence. The model utilizes these sites for reconstructing the
relationship between genetic and antigenic evolution in the feature space. Therefore,
it is necessary to measure the relevance of site mutations according to the antigenic
variation. Cui et al. [6] proposed measurement by introducing the below score for

the site’s antigenic significance:
S; =|@;|x E; 3)

where i is the index of the site in the sequence, i is the significance score, and “ is
Shannon’s entropy of site i in the whole database as computed by the following

formula:

4
where /. is the probability of amino acid j occurrence at position i. ®i is a coefficient

expressed with the following formula:

L (N1 X Nog = Nyg X Ny )
\/NXIXNXOXNIYXNOY (5)

1

where N ("™"e {o. 1}) is the number of HI entries with X=m and Y=n. The variable
X represents the occurrence of mutation at site i (0 or 1 for conserved or mutated
cases, respectively). The variable Y expresses the antigenic relationship between the

test-reference pair of viruses in HI entries. If the test and reference are antigenically
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similar, the Y variable value is zero. Otherwise, they are variants, and it takes the
value of one. V¥ denotes the number of entries with Y=n, whereas X can take any

value from {0,1}. Similarly, Nony represents the number of entries with X=m, while
Y has a value from {0,1}. Note that all variables in Eq. (5) are calculated only for

site i. In the case of a conserved site, the significance score is set to zero.

The application of Eq. (3) can be extended to sequences encoded by RAAAs.
Encoding genetic sequences by such an alphabet notably changes the entropy and @
values and, accordingly, the significance score. The significance score for all sites
obtained by applying a RAAA is further scaled into the unit interval /0,1]. This
allows us to compare the significance of a specific site considering different
alphabets. The final high-impact sites are determined by setting a threshold on the
results of the scaled significance score. The threshold value is selected from the set
{0.2,0.3,0.4,0.5,0.6,0.7,0.8}. It’s worth noting that a site is selected if its scaled
significance score is higher than the target threshold. Obviously, decreasing the

threshold leads to an increase in the number of selected (high-impact) sites.

2.4. Clustering the AAindex1 Database

The AAindex1 database is used to perform the second stage of encoding. We
select some entries from AAindex1 (called representatives) that are further used to
encode the genetic information of obtained selected sites in the previous step. It is
known that there is a high correlation between AAindex1 entries. Therefore, we
cluster them and choose a representative from each cluster to diminish the number
and correlation of final features. Clustering should be performed so that the objects

of a cluster have almost the same encoding impact on antigenicity modeling.

2.4.1. Computing Mutual Information
To cluster the AAindex1 database, we create a feature vector for each entry
by a similar scenario as described [6] with a modification for RAAAs. In the

suggested method, the feature vector characterizes the AAindex1 entry by mutual
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information (MI). The MI value expresses not only the significance of genetic
information but also the impact of encoding for a selected site individually. Note that
the size of the feature vector for clustering AAindex1 is the same as the size of
selected sites. Indeed, each element of the feature vector is the measure of mutual
dependency between the changes in a selected site, encoded by an AAindex1 entry,

and antigenic variants within the HI database.

The number of amino acids in the RAAA is less than in the standard alphabet.
Thus, a question arises on how encoding is carried out using AAindex1 regarding a
RAAA. In order to solve this issue, we define a new database, called pseudo-
AAindex1, derived from the original AAindex] database. The procedure of

generating pseudo-AAindex]1 is described in Figure 2.

As previously stated, each amino acid group has a representative, which
replaces all amino acids of the group in protein sequences. In order to assign a value
to the representative, we compute the average of AAindex1 values for the amino
acids within the group. This allows each amino acid to participate and have its own
effect through the representative. Thus, a pseudo-AAindexl1 is created for each
RAAA, making it possible to calculate the mutual information in RAAA encoding.
For simplicity, we hereafter refer to both the original AAindex1 and the pseudo-

AAindex!1 simply as AAindex]1.

2.4.2. Determining the of optimal number of cluster
When considering an alphabet, we create a feature vector for each AAindex|1
entry, the size of which depends on the number of determined high-impact sites.
Before clustering AAindex1, it is necessary to determine the optimal number of
clusters. Indeed, this number affects the final feature vector, which is used for
antigenic variant modeling. For this purpose, we conduct a comprehensive search
for the optimal number by employing three algorithms: K-means; agglomerative

clustering with different linkage criteria; and spectral clustering.
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First, we determine the number of unique feature vectors. Clustering is not
required if the number is less than a threshold (e.g., five). When the number of
unique vectors i1s more than the threshold, we cluster the set of vectors, while the

number of clusters starts from two and increases up to ten.

Generally, six clustering variants are applied, including: K-means;
agglomerative clustering with four different criteria (ward, average,
complete/maximum, and single/minimum); and spectral clustering. The obtained
clustering from each algorithm is individually evaluated by four scores, including
Silhouette, Calinski-Harabasz, Davies-Bouldin, and the sum of squared distances of
objects to their closest cluster. Further, the results are plotted and manually checked

to decide the optimal number of clusters for AAindex1 associated with an alphabet.

2.4.3. Clustering

Generally speaking, the aim of clustering is to decrease correlation between
AAindex]1 entries. This also leads to diminishing the number of features, which are
used in the final classification. To cluster the AAindex1 database, we apply the
associated clustering algorithm by which the optimal number of clusters was
determined from the previous subsection. Next, we select a representative from each
cluster. The representative of a cluster is the closest object to its center. The
representative is further employed to encode the information of high-impact sites for

the classification.

2.5. Classification of Antigenic Variants

We use the obtained cluster representatives to apply the secondary encoding.
This is carried out by replacing an amino acid group representative in the selected
sites with its numerical value from the cluster’s representative. Then, we
individually calculate the differences between the test and the reference strains for
each HI assay database entry by subtracting their encoded selected sites (or feature

vectors). If we denote the number of high-impact sites and number of clusters



316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332e

333e

334e

335

336

337

338

339

340

341

342

343

BJIOKEHUE CAA U AHTUT'EHHA# 3BOJIIOLIUA 10.15789/2220-7619-RAA-1968
RAAA ENCODING & ANTIGENIC EVOLUTION

representatives with N and M, respectively, then the final feature vector has the size
of NXM.

Before performing the final classification, the last step is to determine the best
classifier. To decrease the effect of the classifier on the results, we consider five
different classifiers, including random forest, multilayer perceptron, logistic
regression, support vector, and Gaussian naive Bayes. Each classifier has its own
parameters optimized through grid search (parameter list in Table II).

Grid search is carried out by cross-validation with different parameter
combinations. Note that the Gaussian naive Bayes classifier has no parameters for
grid search, but it assumes that features are independent. Thus, we perform principal
component analysis on the feature matrix to decrease the dependency. A threshold
on the percentage of variance explained by the selected components was set as a
parameter for Gaussian naive Bayes.

By comparing grid search results, we were able to choose the best classifier
with high performance in terms of accuracy. Note that the selection of optimal
classifier depends on the results of three procedures:

Encoding by the alphabet (primary encoding)

Selection of high-impact sites

Clustering the AAindex1 database and choosing representatives for secondary
encoding

Among these procedures, the first has the most decisive influence on
classification results. In fact, it changes the amino acid space globally, resulting in
different representations of genetic variation, as well as different relationships

between genotype and phenotype.

I1I. RESULTS & DISCUSSION
Considering all parameters, we ran 224,147 fits (41 alphabets x 7
thresholds x 781 5-fold cross-validations) for each subtype (H3N2 and HIN1) in the
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experimental data to obtain the best classifiers. Knowing the best classifier for each
triple-combination case (subtype, alphabet, threshold), we performed a 10-fold
cross-validation by applying its best classifier. A comprehensive report of the results,
including the evaluation criteria, 1s  publicly available at:

github.com/viroinformatics/Simplified Alphabets.

The maximum accuracy achieved by each threshold is presented in Table III.
Since the length of the feature vector is decreased by increasing the threshold, this
also leads to accuracy reduction. From Table III, it is observed that threshold 0.4
seems to be a good choice for modeling the antigenic variants. Compared with
previous studies [10, 11], our results indicate a high degree of accuracy, especially
for H3N2, which suggests potential application in the field of public health.

As expected, some RAAAs achieved the same accuracy as the standard amino
acid alphabet. Table IV presents the alphabets with the highest performance for
different thresholds and subtypes. In the case of subtype HIN1 with thresholds 0.3
and 0.5, there are alphabets, the accuracy of which are slightly less (about 0.01) than
the standard and Prlic-SDM12-2000 alphabets, but are not added to the table. Since
prediction accuracy significantly drops from threshold 0.5 to threshold 0.8 Table
[1T), we did not consider their results in Table IV. Interestingly, the Risler-88 and Li-
2003 alphabets are observed in the list of each subtype.

Moreover, the Cannata-2002 alphabet seems to be more informative for
subtype H3N2 rather than for HINI. In some cases, e.g., subtype HIN1 with
threshold 0.4 and subtype H3N2 with threshold 0.3, the feature vector obtained from
RAAAs is shorter in length than that obtained from the standard alphabet, while their
accuracy is the same. This indicates that the amino acid space represented by the
standard alphabet has redundant dimensions to express genetic variation of antigenic
variants. Next, we briefly discuss each of the alphabets from Table IV.

Stephenson & Freeland analyzed 34 different RAAAs [29] and classified
them into five classes based on how grouping was carried out. The classes are

chemistry, sequence alignment, structural alignment, contact potential, and protein
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blocks. Of the alphabets in Table IV, four are based on sequence alignment methods,
whereas two rely on structural alignment. Only one alphabet (Zou-2009) was created
by protein blocks. The complete classification of RAAAs presented in Table I is
based on published work [29].

Similarity between amino acids can be defined from various viewpoints, e.g.,
hydrophobic residues (I, V) and aromatic residues (F, W, Y). The main idea of
constructing a RAAA is to use amino acid properties to define similarity, with
placing of similar amino acids in a group. For example, the RAAA presented by Li
et al. [20] was obtained from amino acids substitutions by scoring similarities that
may be beneficial in recognition of protein folds. Their results imply that at least ten
amino acid types are required to characterize protein complexity.

Cannata ef al. [5] presented a method to produce RAAAs by scoring different
amino acid compositions using a branch and bound algorithm and substitution
matrix. Their alphabet belongs to the 'alignment-based methods' class of sequences.
Furthermore, Lenckowski et al. [ 19] suggested an alphabet generated using a genetic
algorithm and strategy based on global sequence alignment. Their results indicate
that the proposed alphabet outperformed the standard amino acid set and other
RAAAs in the sequence classification task. Andersen and Brunak's RAAA [1]
includes 13 letters; it is also constructed based on sequence alignment. In contrast,
RAAAs proposed by Prlic et al. [23] and Risler et al. [25] are both derived by
substitution frequency of structural alignments.

Zou et al. [42] applied reduced amino acid alphabets to predict defensin
family and subfamily. They clustered amino acids by the protein blocks (PBs)
method [7, 9], in which the distribution of amino acids in PBs was used to generate
clusters of equivalent amino acids with respect to local structure. Indeed, this kind
of alphabet can be considered a structural alphabet. Their results indicate that use of
such alphabets can improve prediction accuracy with defensin family and subfamily.

Surprisingly, no alphabet based on attributes of individual amino acids attained a
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high level of performance. Taken together, the high-performing RAAAs emphasize
the role of structural features in antigenic evolution modeling.

By checking the high-impact sites in the Influenza Research Database
(IRD) [40], we found that not only antigenic sites have a significant influence on
antigenicity, but also other amino acids located in close proximity. The results
indicate that all selected non-antigenic sites are related to immune responses.
According to IRD, these have been experimentally determined to be T-cell epitopes,
B-cell epitopes, and MHC-binding epitopes of different classes. This highlighted a
caveat: In modeling of antigenic evolution, the model should consider not only the
genetic information of antigenic sites, but also that of neighboring positions, as they
may indirectly impact antigenicity. Note that feature vector construction relies on
high-impact sites, but the evolutionary history showed that even one amino acid
substitution can change the antigenic cluster of the influenza virus [28]. Such a
substitution may present a low impact through the mutual information score. We
believe a desirable model must take into account the effects of both high and low
impact sites. The visualizations of selected high-impact sites for HIN1 (threshold
0.3), and H3N2 (threshold 0.4), are presented in Figure 3. These are cases with high
accuracy and shorter feature vector length.

Various AAindex1 entries were designated as representatives during all
experiments with optimized classifiers. The top ten entries and their frequencies are
listed in Table V. The complete list of AAindex1 entries and their frequencies is

available (github.com/viroinformatics/Simplified_Alphabets).

It can be seen that the majority of AAindex1 attributes used in model
construction are associated with charge properties. This emphasizes that antigenicity
notably depends on protein conformation, which cannot be fully reflected in a one-
dimensional representation of protein as a sequence. However, the model can capture
some attributes information by encoding the genetic sequence using

physicochemical properties presented in the AAindex1 database.
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Table V also indicates that nine out of the ten most frequently AAindex1
entries are common in both subtypes. The last AAindex1 entry in the list of each
subtype is different. To better understand the characteristics of entries in Table V, we
computed the Pearson correlation coefficient and visualized it in Figure 4. It is
observed that the majority of entries in Table V are not correlated, with two
exceptions: FAUJ880111/KLEP840101 and FAUJ880105/CHAMS&30103.

Although the uncommon entries between HIN1 and H3N2 are different, it can
be seen that they are correlated. In addition to the correlation matrix, we used
principal component analysis (PCA) to identify the main components of 11 distinct
AAindex1 entries in Table V and their expression in terms of explained variance.
Figure 5 indicates that the first six components describe more than 90% of the
explained variance. Seven and nine components represent 95% and 99% of the
explained variance, respectively.

We also considered the performance of classifiers for antigenic variant
modeling. Among five classifiers, random forest and multilayer perceptron
outperformed others, in terms of accuracy, for both the HIN1 and H3N2 subtypes.
The Gaussian naive Bayes classifier gave the worst results, so it may not be suitable
for this kind of modeling.

In summary, the outstanding ability of our approach is based on redefining the
mutation by RAAA and amino acid attributes used for encoding through a two-fold
procedure. The primary encoding plays the main role with high priority, whereas
secondary encoding has a supplementary role. From one point of view, the primary
encoding determines the high-impact sites, while the secondary encoding gives the
numerical interpretation to the genetic information of selected sites. From another
point of view, the primary encoding interprets the mutation, and the secondary
encoding reconstructs the specific relationship between genetic and antigenic
differences (for the test and reference strains).

The proposed two-fold encoding approach revealed some aspects of

mutations related to the antigenicity. Our findings indicate that encoding associated
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with structural or charge properties of the protein dramatically impacts the
performance of the antigenic model. This is in agreement with recent studies done
by other researchers [14, 39]. In addition, RAAA encoding can lead to a smaller
feature space dimension, while performance is maintained or improved. So far, this
approach was applied only to seasonal human influenza strains. However, there are
no theoretical limitations that would prevent further testing as a universal
computational model for predicting antigenicity in other influenza subtypes, such as
zoonotic H5, H7, H9, or other relevant influenza A subtypes that cause sporadic
human infection.

I1I. Conclusion

Determining the degree of antigenic similarity between influenza virus strains
is crucial in choosing candidate vaccine strains and subsequent timely vaccine
production. Currently, the degree is measured via HI assay, a widespread laboratory
procedure. Although HI assay is the gold standard method, it suffers from several
shortcomings. Therefore, it has been suggested to employ computer-aided models as
auxiliary tools to assess preliminary information about viral antigenicity prior to HI
assay.

A notable problem in modeling antigenic evolution is the representation of
genetic information to better express the relationship between genetic and antigenic
variations. This paper proposes a two-fold encoding approach to genetic information
using both a reduced amino acid alphabet (RAAA) and an amino acid index
database. By applying a RAAA, we redefine the mutation as changes between amino
acid groups of the alphabet, while the output sequence of the primary encoding is
still alphabetical. The secondary encoding uses representatives from the AAindex1
database to convert the alphabetical sequence of the primary encoding into the
numerical. The experimental results indicate that models built using RAAA
encoding are able to achieve the same accuracy as models using the standard amino
acid alphabet. The RAAA-based approach, however, features reduced computational

complexity and associated cost.
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Moreover, the suggested encoding can reveal the amino acid attributes which
drive antigenic evolution. In agreement with previous studies, we find that structural
and charge characteristics are the most beneficial in modeling antigenic evolution.
Although the results obtained by our approach are desirable and promising, they are
achieved by taking into account only high-impact sites. It is known that even one
substitution can change the antigenic cluster, so we believe that further incorporating
the role of low-impact sites into the model may enhance its accuracy and prediction
potential; this will be addressed in future studies. Additionally, the model can be
improved by: introducing new reduced amino acid alphabets; employing more
significant and descriptive criteria for selecting key sites; and incorporating
neighboring amino acid effects into the model.

Computational approaches for predicting antigenic properties from genetic
sequence are also quite relevant for highly virulent influenza viruses. Laboratory
testing of these pathogens requires high biosafety certification levels, and such
analysis is not only time-consuming and labor-intensive, but also costly. Unlike
current laboratory approaches, computational prediction of antigenic properties from
viral sequence has the potential to enable rapid, large-scale antigenic
characterization of influenza viruses. It is worth mentioning that application of our
approach is not limited to modeling of antigenic evolution. It can be used in
modeling any phenotype that is based on protein sequence, such as interactions with

monoclonal antibodies.
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Table 1. The list of alternative and standard amino acid alphabets employed to

encode the protein sequences in our experiments. The alphabets are borrowed
f

lj’a&nuua 1. Cnucok uccne0o8anHvix aiIbMEPHAMUBHBIX U CHIAHOAPHIHBIX
Inunoxucnomnvix angasumos, UCNONb306AHHBIX 0/l KOOUPOBAHUA 0ENKOBBIX
Wocneoosamenvnocmei. Angpasumot 3aumcmeosanvt u3 [8, 29, 38]. lleem RAAA

onpeoensaem

Memoo ez2o noJjiy4eHuA.

saumcmeoeana u3 [29].

Knaccuguxayusn

O6wem Ban-nep-Baansca

Dickerson 1983

Prlic SDM12 2000
Prlic SDM17 2000
Melo 2005

mmm

Name of alphabet Groups
’Ha3paune Ipynnsbl

andasura
Zrtandard A,C,D,E,QEY,GHLV,K,RLMN,PS,T,
GHaJ:[apTHbIﬂ w

Hydrophobic RKEDQN, GASTPHY, CVLIMFW

TunpodoOusrit

Y GASCTPD, NVEQIL, MHKFRYW

Polarity LIFWCMVY, PATGS, HQRKNED
TonsiprocTh

Polarizability GASDT, CPNVEQIL, KMHFRYW
TonsipusyemocTs

Mahler 1966 DE, KRH, QN, ST, P, CM, WYF, GALIV
Lehninger 1970 DE, KRH, NQSTGCY, PAWFMLIV

DENKRQH, STGPACWY, FMLIV

Taylor 1986 DE, N, KRH, Q, T, SGAC, P, YWF, M, LIV
Weathers 2004 DENRH, KQST, GPACM, WYFLIV

SE-B(14) A, C,D,EQ, FY, G, H, IV, KR, LM, N, P, ST, W
SE-B(8) AST, C, DHN, EKQR, FWY, G, ILMV, P

Risler 1988 D,E,N,KRQ, S, T, G, P, H, A, C W, YF, ML, IV
Riddle 1997 DE, NKRQS, THA, GP, CWYFMLIV

Mirny 1999 DE, KR, NQST, GP, HWYF, ACMLIV

D, N, EKR, QST, G, P, H, A, C, W, YF, MLIV
D,EK,N,R,Q,S,T,G,P,H,A,C, W, Y, F, M, LIV
DENKRQSTP, GA, H, C, WYFMLIV

Dayhoftf 1978 DENQ, KRH, STGPA, C, WYF, MLIV

Murphy 2000 DENQ, KR, ST, G, P, H, A, C, WYF, MLIV
Cannata 2002 D,E,N,KR, Q,ST,G,P,H,A,C,W, Y, F, ML, IV
Fan 2003 DEQ, KR, STA, G, P, NH, C, WYF, ML, IV

Li 2003 DE, KRQ, ST, G, P, NH, AC, WYF, ML, IV
Edgar Se-B 2003 DN, EQ, KR, STA, G, P, HW, C, YF, MLIV

Edgar Se-V 2003 DEN, KRQ, STA, G, P, H, C, W, YF, MLIV
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Amino acid physicochemical attributes

Dusnko-xUMHUYECKUE CBOMCTBA

AMHUHOKHCJIOT

Substitution frequency -- Structural alignment

acTOTa 3aMEILEHUS --
CTPYKTYpHOE BbIPAaBHUBaHHE

Spatial frequency -- Protein blocks

pOCTpaHCTBEHHAs YacToTa --
€JIKOBBIE OJIOKHA

Substitution frequency -- Sequence alignment

aCToTa 3aMCHBI --
bIpAaBHUBAHUC
OCJICHOBATCIIbHOCTH

Spatial frequency -- Contact potential

pOCTpaHCTBEHHAS 4acTOTA --
OHTaKTHBIN MOTEHITHAT
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Table I1. Parameters used in the grid search. Parameter names are based on

the machine learning package Scikit-learn [22].

Tab6umnuna 2. [lTapamerpsl, HcHoJIb3yeMble IPH MOUCKe M0 ceTke. MMena
NapaMeTpoB OCHOBAHBI HA MaKeTe MalIMHHOIO 00y4ueHus Scikit-learn [22].

Method Parameters Total cases in gird search
Metop MapameTtpbl O6Lee YUC/I0 CyHAEeB NPU NOMUCKE MO ceTKe
Random forest Fitting 5-fold cross-
Criterion, idati i i i
anroput™ . validation for each of 40 candidates, totaling 200 fits
n_estimator,
CcnydamHoro min_samples_split | GUTUHI 5-KPaTHOM NEepPeKPeCTHOM NPOBEPKK AN
neca

Kaxaoro uns 40 KaHanaaTos, Bcero 200 ¢puTHHIOB

Logistic regression

Solver, penalty,

Fitting 5 folds for each of 66 candidates, total 330 fits

Noructnyeckan | mayx iter GUTKHF 5 KpaTHOCTERN ANA KaxKaoro ns 66
perpeccua KaHgumaaTos, Bcero 330 ¢utmHros
Solver,
Multilayer perceptron learning_rate, Fitting 5 folds for each of 648 candidates, total 3240 fits
. _ | activation, .
MHOrOCNOMHBIN | 1oy iter, MoaroHka 5 KpaTHOCTeN ANA Kaxaoro us 648

nepcenTpoH learning_rate_init, | KaHgMAaToB, Bcero 3240 GpMUTUHIOB
hidden_layer_sizes
Fitting 5 folds for each of 24 candidates, total 120fits
SVM Kernel, gamma, C,

degree

OUTKHT 5 KpaTHOCTeN ans Kaxkaoro ns 24
KaHgmaaTos, Bcero 120 ¢utmHros

Gaussian naive bayes

layccoBcKuit
HaWBHbIN
6anecoBCcKui
Knaccuodukatop

PCA_threshold

Fitting 5 fold for each of 3 candidates, total 15 fits

GUTUHT 5 KpaTHOCTeN AnA Kaxkaoro M3 3 KaHAMAATOoB,
Bcero 15 ¢puTuHros




BJIOKEHUE CAA U AHTUT'EHHA# 3BOJIIOLIUA 10.15789/2220-7619-RAA-1968
RAAA ENCODING & ANTIGENIC EVOLUTION

Table III. The maximum accuracy was obtained by 10-fold cross-validation
using different thresholds for scaled significance score. Note that increasing the
threshold may lead to shorter feature vector length and consequent reduced
accuracy.

Taoauya 3. Makcumanvnas mounocms oOviia noayuena nymem 10-kpamnoi
nepeKpecmHuoll NPOGEPKU C UCNOIb30BAHUEM PAITUYHBIX NOPO206HIX 3HAYECHUIL
011 Macuimaoupyemoil OueHKU 3HAYUMOCmU. YeenuueHue nopoza Modxcem
npueecmu K YMEHbUIEHUIO OJIUHbL 6eKMOpPA NPU3HAKOS U, KAK ciaeocmeue, K
CHUMICEHUI0 MOYHOCMU.

Threshold

IMopor
02 | 03 0.4 0.5 0.6 0.7 0.8

Subtype

IoaTun

HIN1 0.88 | 0.88 | 0.87 | 0.84 | 0.77 | 0.77 | 0.77

H3N2 092 | 092 | 092 | 0.9 0.88 | 0.85 | 0.83
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Table I'V. High performance alphabets in our experiments by virus type and site
selection threshold. The amino acid groups for each alphabet are presented in
Table I.

Tabnuua 4. BoicokodpPexkTrBHBIE AT(PABUTHI B IKCHEPUMEHTAX MO THILY
BHpPYCa M MOPOry BbIOOpa cailTa. AMHUHOKHMCJOTHbIE TPYNIbI ISl KAXKIOTO

asdasuTa npeacrapiaeHsl B Tadauue 1.

Threshold
HIN1 H3N2
Mopor
Standard, Risler-88, Li- .
2003, Anderson-2004 Standard, Risler-88,
o oo Cannata-2002, Zuo-2009
0.2 CraHzapTHbIN, Risler-
’ 88, Li-2003, Anderson- N
CraHaapTHbI, Risler-88,
2004
Cannata-2002, Zuo-2009
Standard* Standard, Cannata-2002
0.3
CTaHAapTHbIN * CraHgapTHbIi, Cannata-2002
Standard, Lenckowski-
2007 Standard, Cannata-2002
0.4
CTaHOapTHbIN, CraHgapTHbIN, Cannata-2002
Lenckowski-2007
Risler-88, Li-2003,
0.5 Prlic-SDM12-2000*
Zuo-2009

* There are other alphabets, not listed, whose accuracy was slightly less than the alphabets shown in the table.

* CyWwecTBYIOT M Apyrve andaBuTbl, He YKa3aHHbIe B CMUCKE, TOYHOCTb KOTOPbIX
6blna HECKO/IbKO MeHbLUe, Yyem y andaBuToBs, NpuBeaeHHbIX B Tabaumue.

10.15789/2220-7619-RAA-1968




BJIOKEHUE CAA U AHTUT'EHHA# 3BOJIIOLIUA
RAAA ENCODING & ANTIGENIC EVOLUTION

10.15789/2220-7619-RAA-1968

Table V. List of the top ten most frequent AAindex1 entries in the experiments
with optimized classifiers.

Ta6uua V. Ciucok nepBbIxX JecsiTd HanOoJ1ee yacThix 3anuceit AAindex1 B
IKCIIEPUMEHTAX C ONTUMHU3HMPOBAHHBIMHU KJIACCH(PUKATOPAMH.

ID
HNnenTudukarop

Description
Onucanue

Freq.
Yacrtora

HIN1

ANDN920101

alpha-CH chemical shifts
XHMHYecKue caBuru anbpa-CH
(Andersen et al., 1992)

147

CHAMS30104

The number of atoms in the side
chain labelled 2+1

KomnruectBo aToMOB B GOKOBO#
uenu, nomeueHnoi 2+1 (Charton-

106

KLEP840101

Net charge
Pesynerupyrommuii 3apsn (Klein et

97

CHAMS&30103

The number of atoms in the side
chain labelled 1+1 Komuuectso
aTOMOB B OOKOBOM LIETIH,
nomeueHHoi 1+1 (Charton-
Charton, 1983)

92

FAUJ880111

Positive charge IloxoxuTenbHbIit
3apsx (Fauchere ef al., 1988)

83

CHAMS30107

A parameter of charge transfer
capability I[Tapamerp
CIIOCOOHOCTH MepeHoca 3apsia
(Charton-Charton, 1983)

83

VENT840101

Bitterness 'opeus (Venanzi, 1984)

74

FAUJ880112

Negative charge OrpunarenbHbli
3apsn (Fauchere ef al., 1988)

70

FAUJ880105

STERIMOL minimum width of
the side chain STERIMOL
MHHHMAIbHAs MIHPUHA GOKOBO
nemnu (Fauchere ef al., 1988)

47

CHAMZ&30105

The number of atoms in the side
chain labelled 3+1 KonmnuectBo
aTOMOB B OOKOBOM IICTIH,
nomeueHHoi kak 3+1 (Charton-
Charton, 1983)

38

H3N2

VENT840101

Bitterness 'opeus (Venanzi, 1984)

119

CHAMS&30103

The number of atoms in the side
chain labelled 1+1 KomnuectBo
aTOMOB B OOKOBOM LIETIH,
nomeueHHoi 1+1 (Charton-
Charton, 1983)

117

FAUJ880111

Positive charge IlonoxurensHbIi
3apsz (Fauchere ez al., 1988)

101

ANDN920101

alpha-CH chemical shifts
XUMHYecKue cBuru anspa-CH
(Andersen et al., 1992)

101

KLEP840101

Net charge Pesynsrupyrommit
3apsz (Klein ez al., 1984)

88

FAUJ880112

Negative charge OTpunarenbHbIi
3apsx (Fauchere ef al., 1988)

87

CHAMS30107

A parameter of charge transfer
capability [Tapamerp
CIIOCOOHOCTH MepeHoca 3apsiaa
(Charton-Charton, 1983)

66

CHAMZ&30104

The number of atoms in the side
chain labelled 2+1 Konuuectso
aTOMOB B OOKOBOM IIETIH,
nomeueHHoi 2+1 (Charton-
Charton, 1983)

60
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STERIMOL minimum width of
the side chain STERIMOL

Bomoponusix cBs3eil (Fauchere et
al., 1988)

FAUJ880105 N 59
MHUHHUMaJIbHaA IHUPHAHA OOKOBOI
uemnu (Fauchere ef al., 1988)
Number of hydrogen bond donors
FAUJS80109 KonuuecTBo 10HOPOB 53
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Figure 1. General scheme of the computational pipeline. It consists of five
parts: encoding HA sequences by a reduced amino acid alphabet; selecting
significant sites; clustering the AAindex1 database using mutual information of
selected sites; encoding the sites by a representative from each cluster; and
finally training the classifier.

Puc. 1. O0masi cxemMa BBIYMCIUTEJIBHOI0 KOHBelepa. OH COCTOMT W3 NSATH
yacTe:  KoaupoBaHue  mocienosarenbHocreii  HA  cokpaimeHHbBIM
AMMHOKHCJIOTHBIM a71()aBUTOM; BbIOOP 3HAYMMBbIX Y4ACTKOB; KJIAaCTepH3aLus
0a3bl JaHHbIX AAindexl ¢ wucnosb30BaHMEM B3aMMHOW WHGOpPMaALMH
BbIOPAHHBIX CAWTOB; KOJAMPOBAHHE CANTOB MPEACTABUTEEM OT KaXKIOI0
KJIacTepa; u, HAKOHell, 00y4yeHHe KaccupuraTopa.

Simplified Select the
alphabet alphabet

databse

Y
< Lehninger 1970 ™
amino acid groups:

{DE},

{KRH},
{NQSTGCY},
o {PAWFMLIV}

h 4
Encoding the

Hl assay sequence Adindex1

database database

Clustering AAindex1 database Maodeling the antigenic variants

Computing mutual

Selecting the significant sites

.| Scoring the
> o
positions

4

Scaling the
scoring range

v

Thresholding &
selecting sites

Yvy

information

v

Optimal number
of clusters

b

Clustering

h 4

Choosing
representative

Encoding by

"l representatives

v

Grid search

v

Training the
classifier

h 4

Evaluating
models
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of the pseudo-AAindexl

10.15789/2220-7619-RAA-1968

Figure 2. Generation database from the
hydrophobicity index. The pseudo database is created based on the selected
RAAA. Note that the value assigned to each group is the average of the group's
amino acid values in the scaled AAindex1 vector.

Pucynoxk 2. Co3panme 0a3pl JaHHBIX 1ceBao-AAindex]l wu3 wuHAekca
ruapododnocTu. IlceBnoda3a MaHHBIX CO34aeTCsl HA OCHOBE BbLIOPAHHOIO
RAAA. O0paruTte BHUMaHHE, YTO 3HAYEHHE, IPUCBOCHHOE KAXKI0H IpyIIe,
npeacTapjisier co00il cpelHee 3HaYeHHMEe BeJIMYHH AMUHOKHCJIOT rpynnbl B

MacmTadupoBaHHoOM BekTope AAindexl.

Hydrophobicity index

A/L
0.61
1.53

R/K N/M
0.60 0.06
SIS RN

D/F
0.46
2.02

C/P Q/S ET  G/W
1.07 0. 0.47 0.07
1.95 0.05 0.05 2.65

HY IV
0.61 2.22
1.88 1.32

Y

Scaling
the vector

0.23018868\
0.22641509
0.02264151
0.17358491
0.40377358
0.
0.17735849
0.02641509
0.23018868
0.83773585
0.57735849
0.43396226
0.44528302
0.76226415
0.73584906
0.01886792
0.01886792
w 1.

Y 0.70943396

—|Ln-c'ng7<|—_ImmOﬁUZ:UI;\

V' 0.49811321

|

Simplified alphabet)
(Lehninger 1970)

-

Pseudo-AAindex entry
Mean of AAindex1
entry values
for amino acids
of each group

{D.,E}
{K,R,H}

> 0.1754717

{N,Q,5,T,G,C,Y}

> 0.2968553
0.1714286

{P,AW,F,M,L,I,V}

> (0,6358491

N
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Figure 3. Visualization of high-impact sites on the surface of hemagglutinin
protein by PyMOL [26]. Top — H1 protein (PDB ID: 1RUY [3, 12]). Bottom —
H3 protein (PDB ID: STHF [3, 33]). Note that the highlighted sites include not
only the antigenic sites but also those experimentally determined as T-cell
epitopes, B-cell epitopes, as well as MHC-binding epitopes of different classes.
Pucynok 3. Busyaausanusi y4acTKOB CWJIBHOIO BO3/1eliCTBHSI HA MIOBEPXHOCTH
0esika reMarrIlOTUHUHA ¢ nomoumbio PyMOL [26]. BBepxy — 0esqioxk H1 (PDB
ID: 1RUY [3, 12]). Bum3y — 0esqox H3 (PDB ID: STHF [3, 33]). O0paruTre
BHMMAaHHe, 4YTO BbleJeHHbIE CANTHI BKJIKYAIOT HEe TOJbKO AHTUTE€HHbIE
CaiiThl, HO U Te, KOTOPbIE IKCINEPUMEHTAIBHO ONpe/ieseHbl Kak T-KijieToYHbIe
3MUTONbI, B-kiaeTouynbie 3nuTonbl, a Tak:ke MHC-cBs3bIBaOIIME 3MUTONBI

Pa3HbIX KJIACCOB.
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Figure 4. Correlation matrix of 11 unique AAindex1 entries from Table V. Note
that the majority of indices have low correlation.

Pucynoxk 4. Marpuna xoppeasinun 11 yHukanabHbIX 3anuceii AAindexl wu3
Tabiuubl V. O0paTrute BHUMaHHME, YTO OOJBIIMHCTBO HMHIEKCOB HMEIOT

HU3KYI0 KOPPeJIsIHuIo.

10
ANDMN920101

CHAMB30104 -

KLEF840101 -

CHAM830103 -

FAUJ8B0111 -

-02
CHAMS30107 -

-00

VENT840101 -

FALB80112 -

FAUJ820103 -

CHAMSB30105 -

FAUJ820109 -

\NDN920101 -
HAMB30104 -
KLEPB40101 -
HAMEB30103 -
FAUJBE0111
HAMB30107 -
VENT840101 .
FAUJ8B0112 -
FAUJEB0105 -
HAMB30105 -
FAUIB80109
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Figure 5. Explained variance ratios for PCA analysis components. Analysis was
performed for 11 unique AAindex1 indices from Table V. The result shows that
the first six components represent more than 90% of the identified variance.

Pucynoxk S. BoisiBjieHHbIe KOI(Q(PUUMEHTHI TUCIEPCUU IJS KOMIIOHCHTOB
ananmu3a PCA. Anaiu3 Obl1 mnpoBeaeH Adasi 11 yHHKAJAbHBIX HMHAEKCOB
AAindex1 wu3 Tabdauubl V. Pe3yabrar mnokasbiBaeT, 4TO IepBble IIECTh

KOMIIOHEHTOB NpeAcTaBasioT 0oJiee 90% BbISIBJICHHOH TUCTIEPCUH.

0.30 A

0.25 -

0.20

0.15

Explained Variance Ratio

0.10 -

0.05

0.00

# PCA Component
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