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Abstract

Sarcoidosis and tuberculosis are both granulomatous diseases that have many
similarities, making the differential diagnosis of sarcoidosis and tuberculosis
difficult, as well as leading to inappropriate treatment selection of both diseases.
Autoimmune inflammation (Al) is one of the processes identified tuberculosis and
sarcoidosis. Current evidences about the risk and clinical outcomes of COVID-19
infection in patient with sarcoidosis and M.tuberculosis co-infection are still not well
understood. SARS-CoV-2 has direct damage to the epithelial cells of the respiratory
system, and in-directly due to circulatory disorders. Materials and methods. In the
study we analyzed characteristics of autoimmune response in patients with
granulomatosis diseases (tuberculosis and sarcoidosis) after COVID-19. We have
analyzed articles for the period of December 2019 to March 2023, published in
international database ("Medline", "PubMed", "Scopus™). The keywords we used
“COVID-19”, “SARS-CoV-2", *“tuberculosis”, “sarcoidosis”, *“granulomatosis
diseases”, “T cells”, “B cells”, “Treg", "follicular Treg" and "Treg subsets". The
narrative review was carried out in accordance with the PRISMA protocol
(http://www.prisma-statement.org) used for this type of study (ID -423604).
Results. The influence of COVID-19 infection can also make a significant
contribution to the violation of the T- and B-cell immune response, the violation of
the nature of cellular metabolism, which will affect the course of granulomatous
inflammation in various ways. According to the different researches, autoimmune
inflammation can be an important protective mechanism in sarcoidosis and, at the
same time, exacerbates the course of tuberculosis infection with the disease
progression and pathogen drug resistance formation subsequently. The study of
immune response features in patients with COVID-19 showed the presence of
several similar characteristics in cellular components of the immune response.
Conclusion: Evidence of the presence of autoimmune inflammation in patients with
these granulomatous lung diseases, the development of patient immunotypes,

including the transferred COVID-19, will be a significant contribution to the



development of personalized patient management tactics, taking into account the

identified violations of the immune response mechanisms.

Keywords: autoimmunity; tuberculosis; sarcoidosis, granulomatosis diseases, T
cell, B cell, Treg, follicular Treg, Treg subsets, prognosis.



Pe3rome

Capkon0o3 ¥ TyOepKyJe3 SBISIOTCS TPaHyJIeMaTO3HBIMHU IaTOJIOTHUIMH,
UMECIOIIUMHU  OOJIBIIIOE KOJIMYECTBO CXOXKHUX YEPT, M3-3a KOTOPBIX BO3HHUKAIOT
TpyaHOCTH B auddepeHnnaIbHOil IUArHOCTUKE OTHX 3a00JIeBaHUil, YTO B
JalbHEHIIEM MPUBOIUT K HEMPABUILHOMY BBIOOPY TAKTHKH JICUCHHS MMAIACHTOB.
AyrouMmmyHHOe BocrnaneHue (AB) siBisieTcss OMHUM M3 MPOIECCOB, BHISBICHHBIX
Kak IpU TyOepKyle3e, TaKk W IPH CapKoMao3e. TEeKylIue MaHHBIE O PHCKE H
kmHndecknx ucxonax uHpexkuu COVID-19 y manueHToB ¢ capKou1030M JU00 ¢
couetanHor uHbpeknuerr M.tuberculosis Bce erie HegocTaTouHO M3y4YeHBI. SARS-
CoV-2 oka3biBaeT Kak MPsAMOE IMaTOJOTHYECKOE JCHCTBHE Ha SIUTCIHAIbHBIC
KJICTKH JbIXaTeJIbHOM CHCTEMBI, TaK W OIMOCPEIOBAHHOC 3a CYET HapyHIICHHM

KPOBOOOpAIICHHUS.

Marepuanbl U MeToAbl. B 3TOM wHcclaenOBaHUM MBI H3YyYWIH OCOOCHHOCTH
ayTOMMMYHHOTO OTBE€Ta Y MAaIlMEeHTOB C TIPaHyJIEMaTO3HbIMHU 3a00JIEBaHUSIMU
(TyGepkyne3om u capkou103oM) iociie COVID-19. Mbl npoaHaiu3upoBaiiu CTaTbu
¢ nexadbps 2019 mo mapt 2023 roga, onyOJIMKOBaHHBIE B MEXAYHApOIHBIX 0a3ax
nanabix («Medline», «PubMed», «Scopus»). KitoueBbie ciioBa, KOTOPBIC MBI
ucnons3oBan: «COVID-19», «SARS-CoV-2», «Ty0epkymes», «CapKouao3»,
«TpaHyJieMaTo3Hble  3a0oneBanms»,  «T-kimetkm»,  «B-kmerkm»,  «Treg»,
«bommukysipaeiii - Treg» u  «llonmHoxkectBa Treg». OmnucarenbHblii  0030p
NPOBOJWICS B COOTBeTcTBUM C mporokoiioMm PRISMA (http://www.prisma-

statement.org), ucroyb3yeMbIM JijIs 3Toro THIa uccieaoBanus (1D-423604).

Pesyabtarbl. COVID-19 BHOCHT cyiiecTBeHHBINM BKJaJ B HapylieHue T- u B-
KJICTOYHOTO MMMYHHOTro oTBeTa. KopoHaBHpycHass HHMEKIMS MOXET U3MCHHUTh U
XapakTep KIETOYHOTo MeTab0JIM3Ma, 9TO OTPA3UTCS Ha TCUSHUH TPaHyJIEMaTO3HOTO
BocrayieHus. [1o MaHHBIM pa3IMUYHBIX MUCCICAOBAHNUN, ayTOMMMYHHBIH KOMIIOHCHT
MOJKET OBITh BaJKHBIM 3aIIUTHBIM MEXaHH3MOM IIPH CAPKOMJI03€ U, B TO K€ BpEM,
OH CIIOCOOCH YCYTyOJsiTh TE€UEHHE TYOepKyJle3HOW HWH(EKIMU, MNPUBOIUTH K

IporpeccUpoBaHuio  3abosieBaHus ¢ (HOPMUPOBAHMEM B  JalIbHEWIIEM



JIEKapCTBEHHOHN yCTOMYMBOCTU BO30yauTeNs. M3yueHrue ocOOEHHOCTEN HIMMYHHOTO
orBera y mnauueHToB ¢ COVID-19 u mnauueHToB ¢ MHTEPCTHLHMAIbLHBIMU
3a00JIEBAaHUAMU JIETKMX I[I0Ka3aJl0 HAJIUYME psAda CXOXKHX XApAKTEPUCTUK Y

KJICTOYHBIX KOMIIOHCHTOB MMMYHHOI'O OTBCTA.

3akiarouenue: JlokazaTenbcTBa HAIWMYHMs AyTOMMMYHHOTO BOCHAJICHUS Y
MAIMEHTOB C JaHHBIMU TPaHyJIEMaTO3HBIMU 3a00JICBaHISIMU JIETKUX, ONIPEICTICHIE
MMMYHOTHIIOB MAaIlMEHTOB, B ToM uuciie nepeneciumx COVID-19, 6yayT BHOCUTD
CYIIIECTBCHHBI BKJIJ B Pa3pa0dO0TKy NEPCOHATU3UPOBAHHON TAKTUKU BEICHUS

ManmuCHTOB C YYCTOM BBISIBJICHHBIX HapymeHI/Iﬁ MCXaHNU3MOB HMMYHHOT'O OTBCTA.

KiroueBble cjioBa: AyTOUMMYHHTET, TyOEpKyJie3, CApKOUI03, TPaHyJIeMaTO3HbIE
3a0oneBanusi, T-knetku, B-kinerku, Treg, pommukynapueie Treg, cyOnomynsuuu

Treg, IIPOTHO3.
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1 Introduction

It is now known that the development of autoimmune diseases is multifactorial,
and they follow regularities of additive polygenic inheritance with a threshold effect
of a number of natural factors and sociocultural-anthropogenic epigenetic factors
[34]. Currently, numerous studies demonstrated that a combination of many factors,
including non-infection and infection triggers in individually special immunogenic
predictors with special reactivity, activated autoimmune inflammation (Al) with
development and progression of the disease [105, 118, 125, 127]. As we know,
tuberculosis (Thc) and sarcoidosis are similar to granulomatous disease. However,
the Al has been diagnosed in both diseases with different etiologies [11, 27, 136].

Various T-cell subsets play an important part in the pathogenesis of
autoimmune diseases, represented by Thl, Th17, regulatory T cells (Treg) and
CD8+ T-cells [9, 99]. It is believed that the ratio of Th17 cells, stimulating the
Immune response, and Treg cells, that are suppressors of immune responses, can
lead to the formation of autoimmune inflammation which is characterized by the
presence of self-specific CD3+ T-cells and CD19+ B-cells [65, 61]. It is also known
that uncontrolled chronic infections, including M.tuberculosis infection, are
commonly accompanied by Al with violation of T- and B-cell link of the immune
response, however, little attention is paid to this issue [4, 21].

The phenotypic assessment of B-cells is able to indirectly reflect the functions
of certain subsets of B-cells [135]. Recent studies have shown that in the peripheral
blood of patients with sarcoidosis, the subpopulation of ‘naive’ B cells with the
CD19+1gD+CD38- phenotype reduce and activate resting memory of B cells with
CD19+1gD-CD38+ and CD19+1gD-CD38- phenotypes, respectively. There are few
studies in tuberculosis [104, 149]. Furthermore, the theory of the development of
vimentin autoantibodies has become widespread [126]. The role of vimentin, which
Is present in cells and extra cellular matrix of connective tissues, and is involved in
different types of cell-to-cell interactions, as well as in immune response regulation,

has been known for a long time [90]. Bagavant et al. found an increased titer of 1gG
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to vimentin in patients with sarcoidosis compared with healthy controls [10].
However, other researchers, despite the discovery of autoantibodies to vimentin,
denied their significant impact on the pathogenesis of sarcoidosis in general [90].
Therefore, the part of autoantibodies in the pathogenesis of sarcoidosis is still open.

According to the results of our recent studies, it was noted that patients with
tuberculosis had a significantly high level of autoantibodies in citrullinated vimentin
[20, 90]. A number of clinical manifestations in tuberculosis indicated that the
interaction of the host with mycobacterial antigens causes the subsequent
development of an additional autoimmune inflammatory process, aggravating the
pathology of tuberculosis. M.tuberculosis affects extensive destruction of the
extracellular matrix and the breakdown of collagen and elastin which promote the
release of new potentially autoreactive epitopes [122, 124]. At the same time, one of
the most important ways to avoid the immune response of M.tuberculosis is the
ability to destroy normal functioning of the cells of the immune system and their
metabolism. For example, after PRR recognition that is responsible for endocytosis,
M. tuberculosis is taken up by phagocytic host cells (macrophages, neutrophils and
dendritic cells, DCs) and internalized into the phagosome [140]. Studies have shown
that M. tuberculosis actually uses disruption of phagosome-lysosome fusion and
blockade of acidification of the environment in the phagosome in order to avoid cell
destruction and antigen presentation to acquired immune cells to trigger a specific
Immune response. The effectiveness of the approaches that is described above, it is
an evidence that up to 70% of phagosomes, containing M.tuberculosis, do not fuse
with lysosomes [48, 140].

The emergence of COVID-19 and the rapid spread of the SARS-CoV-2 virus
in worldwide has revealed the dramatic changes in the immune response of infected
patients, affected COVID-19 with varying degrees of severity [139]. The SARS-
CoV-2 has now been shown to be able to suppress the innate mechanisms of the
antiviral response [116]. The lymphopenia was described in many patients is mainly
characterized by a decrease in CD4+ and CD8+ T-cells, which is a characteristic

feature of coronavirus infections. This apparent change in T-cell populations
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demonstrates the significance of their role in the infection. SARS-CoV-2-specific
CD4+ T-cells express IFNy, TNF and IL-2, indicating that patients with SARS-CoV-
2 infection exhibit Th1l cellular responses. The importance of CD4+ T-cells has been
shown in murine models of infection, where T-cell depletion was accompanied with
the development of more severe inflammation in the lungs [57, 151]. At the same
time, immunization of mice with SARS-CoV-2 peptide-derived dendritic cells
induced the formation of virus-specific CD4+ and CD8+ T-cells massively
infiltrating the lungs, leading to increased survival [151]. Moreover, translocation of
SARS-CoV-specific CD4+ and CD8+ T-cells into immunodeficient mice
contributed to better protection against the mouse-adapted strain SARS-CoV-2 [38].
In addition to lymphopenia, patients with COVID-19 also showed increased T-cell
depletion, decreased functional diversity, and correlation with disease progression.
We hypothesise that COVID-19 would alter the immune status of tuberculosis [88]
and sarcoidosis patients [129], but with different manifestations and consequences.

Thus, the review helps to understand key immunological points in pathogenesis
of autoimmune inflammation in patients with the most frequent granulomatous lung
diseases (sarcoidosis and tuberculosis), similar in clinical and radiological
symptomatology and different in etiology, based on changes in T- and B-cell subsets
after COVID-19.

The aim of our study was to determine characteristic of autoimmune
inflammation in development and progression of the disease, and to analyze T- and
B-cell subsets roles in patients with granulomatosis diseases (sarcoidosis and
tuberculosis) after COVID-19.

The Methods of the Review

We have analyzed articles for the period of December 2019 to March 2023,
published in international database ('Medline”, "PubMed", "Scopus"). The
keywords we used “COVID-19”, “SARS-CoV-2”, “tuberculosis”, “sarcoidosis”,
“granulomatosis diseases”, “T cells”, “B cells”, “Treg", "follicular Treg" and "Treg
subsets”. Inclusion criteria were original research with observation of patients with

sarcoidosis, TB and COVID-19, meta-analisis, review articles and research articles.
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Exclusion criteria: books, result of clinical trials, clinical cases. Totally, 37
publications were processed. The narrative review was carried out in accordance
with the PRISMA protocol (http://www.prisma-statement.org) used for this type of
study (ID-423604).

2 Autoimmune response in patients with granulomatosis diseases (sarcoidosis
and tuberculosis) and COVID-19

The clinical symptoms in patient with sarcoidosis and tuberculosis prone to
chronic and generalized cause, based on tissue sites of chronic inflammation that are
driven by delayed-type hypersensitivity (DSH) mechanisms are very similar [40].
Their course, degree of epidemiology danger, treatment management and prognosis
are significantly different [34, 136]. The identification of the etiological factors and
pathogenesis of the disease in such cases can be a key factor in the choice of
management, determining its effectiveness [95]. The main proof of the tuberculosis
etiology of the process is the isolation of M.tuberculosis using bacteriological
diagnostic methods, which determines the basic principle of anti-tuberculosis
therapy - exposure to the pathogen [34].

The interaction of the M.tuberculosis with the host organism is poorly
understood and may results in the activation or the localization of the infection [118].
Despite two decades of an intensified research to understand and cure tuberculosis
disease, biological uncertainties remain and hamper the progress. The problem of
the spread and treatment of drug-resistant tuberculosis became even more urgent.
With the rise of drug resistance, treatment failure rates have increased along with
the use of more toxic therapies that are far more costly [138].

Recently, the interest and the research on the autoimmune aspects in
tuberculosis have been increasing. It is widely accepted, that many autoimmune
diseases could be promoted by inefficiently controlled and/or wrong targeted
immune responses to different types of pathogens, including M.tuberculosis [118,
82]. M.tuberculosis infection is a multifaceted process and has many different
outcomes and complications. Moreover, autoimmunity is one of the processes

characteristics of M.tuberculosis infection [122]. The role of autoantibodies,
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produced by self-reactive plasma cells, in the pathogenesis of Thc is not quite clear
and widely disputed [95]. However, autoantibodies production could be considered
as the result of poorly controlled and imbalanced immune response, as well as a
critical part of pathogenesis of tuberculosis. Autoantibodies during M.tuberculosis
infection might be the markers of comorbid, or even might provoke and upregulate
autoimmune inflammation in chronically inflamed tissues. However, there is an
alternative point of view regarding increased titers of self-reactive antibodies as a
part of protective mechanisms, helping in the clearance of damaged tissue debris
[124].

Unlike tuberculosis, sarcoidosis is one of the few diseases similar in its
characteristics but with an unspecified etiology, leading to a large number of
diagnostic errors and a lack of personalized management [117, 119]. Many
researchers have been looking for pathophysiological similarities between
M.tuberculosis infection and sarcoidosis, based on mycobacterial components
and/or specific to M.tuberculosis antibodies detection in patients with sarcoidosis
[111, 115, 117]. Currently, the role of M.tuberculosis as one of the main etiological
factors in sarcoidosis is still unconfirmed. But the concept of tuberculosis and
sarcoidosis as two responses, whose differences are determined by various organism
relativities and conditions, to closely related etiological factors - is still being
developed [82]. The study of the Mbc role as a classic adjuvant factor of autoimmune
inflammation, is also continuing in this context [84, 122].

It is well-known that the one of the key feature of sarcoidosis pathogenesis is
granulomas formation in lungs, lymph nodes of different localization, spleen, skin,
and other organs. In patients who are genetically predisposed to sarcoidosis, a
contact of antigen-presenting cells (monocytes, macrophages, dendritic cells) with
an unknown non-self antigen may result in imbalanced immune inflammation that
may manifest in granulomas formation [113]. Unlike M.tuberculosis-mediated
granulomas in sarcoidosis necrotic masses are not formed in granulomas and serum
angiotenzin-converting enzyme hyperproduction occurs [123]. The central part of

the epithelioid cell granuloma is composed of activated macrophages, epithelioid
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cells and giant cells, as well as with CD4+ T-cells between them [6]. Furthermore,
the peripheral area of a granuloma contains CD8+ T-cells, fibroblasts, macrophages,
and fibrocytes, while CD19+ B-cells are not typical for granulomas in sarcoidosis
[6]. Innate immunity macrophages and dendritic cells are the first immune cells to
meet the non-self molecules due to the presence of pattern-recognition receptors
(PRRs) [147]. Long-term exposure of PRRs to foreign molecules results in high rates
of cells activation, proinflammatory cytokine production and epithelioid
differentiation of tissue-resident macrophages and peripheral blood monocytes.
Moreover, having recognized and internalized antigens, activated dendritic cells
migrate to the nearest lymph node, where they present the antigens CD4+ and CD8+
T-cells [58, 150].

Currently, special attention is paid to the part of Th17 cells in the pathogenesis
of sarcoidosis [81]. These CD4+ T-cells expressed IL 17A and IL-22, as well as
showed many pro-inflammatory properties. Furthermore, it was showed that
macrophages from granuloma in patients with sarcoidosis express CCL20, that
unregulated Th17 cells migration to inflamed tissue, while IL-23 expression causes
a significant increase in IL-17A production in the sites of granuloma formation
during sarcoidosis [17]. Furthermore, in was shown that anti-inflammatory M2
phenotype was predominant for tissue macrophages in sarcoidosis granulomas, and
their frequencies and activation status were linked with disease progression [17].
Moreover, in vitro and in vivo models also revealed that these cells play an important
part in granuloma formation at the initial stages sarcoidosis. Recently, mTOR
signaling pathway also takes part in sarcoidosis and important for macrophages
during granuloma formation [78]. For instance, mTORC1 activation in murine
macrophages resulted in disease progression and formation of granulomas [78].
Thus, metabolic adaptation of different tissue resident and peripheral blood cells to
the inflammatory conditions in granuloma affected autophagy regulation, as well as
influenced the effectively of antigen clearance and promoted the
persistence/progression of granuloma in general [27]. To date, the diagnosis and

treatment of M.tuberculosis infection remain a problem for the world community.
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Vaccination with the use of BCG, the use of new drugs did not allow coping with
the annual spread of infection and the formation of drug-resistant forms of
tuberculosis [118].

Studies of the autoimmune response in Thc have been conducted since the
middle of the XIX century. Many scientists note the presence of clinical symptoms
of autoimmune diseases in tuberculosis patients, the appearance of autoantibodies,
the presence of a genetic predisposition [1, 34]. The existing assumptions have not
yet found unambiguous evidence of the autoimmune inflammation in tuberculosis
and its effect on the course of the disease, but research in this direction continues.
Previously, the relationship between the development of autoimmune pathology
after the introduction of an attenuated strain of M. bovis was shown. M. bovis is the
main causative agent of tuberculosis in cattle and it is used for immunization in
humans to date, both for the prevention of Tbc and for the treatment of oncological
pathology and even severe COVID-19 [16]. In the experiment, Mtb is quite often
used as an adjuvant, for example, in a complete Freund adjuvant in animal models
of autoimmune diseases [11], which is presumably related to the fact that these
antigens overcome tolerance to host antigens when co-administered. In experimental
models, Mtb immunization can cause autoimmune joint lesions by the cross-
reactivity with proteoglycan in cartilage [12].

Currently, there are evidences of the trigger role of M. tuberculosis in the
development of different autoimmunity diseases, including systemic lupus
erythematosus, rheumatoid arthritis, sarcoidosis, primary biliary cirrhosis and many
others [35, 102]. No reliably known mechanisms for antibodies formation in
tuberculosis which have been identified to date. There are assumptions about
possible mimicry between the antigenic structure of mycobacteria and the host
tissue's own antigens [14].

At the same time, a number of studies had shown that during M. tuberculosis
infection approximately 40% of patients had increased titers of self-reactive
antibodies, that were typically detected in patients with polyangiitis, systemic lupus

erythematosus and other autoimmune diseases [34]. Statistically significant increase
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in plasma concentrations of antibodies in tuberculosis patients was diagnosed to
ribonucleoproteins (15%), anti-SSA (64%) and anti-ACA-IgM antibodies (59%)
[53]. In some cases, high levels of autoantibodies to neutrophil cytoplasm, beta-2-
glycoprotein (anti-b2GPl), cyclic citrullinated peptide, as well as anticardiolipin
antibodies were found. Moreover, the serum levels of detection autoantibodies in
some cases were very similar to patients with autoimmune diseases, while the
effective anti-tuberculosis treatment led to down-regulation of some self-reactive
antibodies levels [25].

Previously, Elkholy et al. reported that the frequency of CD19+ B-cell in
peripheral blood samples from patients with active pulmonary tuberculosis was
significantly lower than in control group [34]. In contrast, Wu et al. found that
CD19+ B-cells were higher in patients with TB vs control group [143]. We noticed
no differences in relative and absolute numbers on total CD19+ B-cell subset
between M. tuberculosis infected patients and healthy controls, but we found
dramatic alterations in B cell subsets composition. The presence of an autoimmune
component is associated with an increase in the level of autoantibodies may be
significant for the correction of therapy and serve as a criterion for considering the
appointment of immunosuppressive therapy in the future. Probably, autoantibodies
elevation could be linked with molecular mimicry, that could be on of the pathogens
strategies of immune evasion during chronic infections and hyperactive immune
response. For instance, some M. tuberculosis heat shock proteins, including Mtb-
HsP60, Mth-HsP65, and mKatG, could be considered as the mycobacterial candidate
antigens with predicted involvement in cross-reactions [33]. The presence of
antibodies in patients with tuberculosis may reflect the relationship between the
pathogenesis of those diseases with the possibility of cross-reactivity between
vimentin and M. tuberculosis peptides [130].

SARS-CoV-2 virus may exacerbate the course of the disease, which could be
associated with increased autoimmune inflammation and altered immune response
[15, 64]. SARS-CoV-2 is also able to suppress antiviral responses as the part of its

Immune evasion strategy. As it was shown previously, lymphopenia was described
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In many patients, mainly characterized by a decrease in the number of CD4+ and
CD8+ T cells, which is a characteristic feature in a number of coronavirus infections
as well [36, 45, 83].

Special form of hyper-inflammatory reactions in response to SARS-CoV-2
may develop in some patients, leading to autoimmune reactions [28, 100].
Apparently, the main role in this case is played by a genetic predisposition to this.
In such cases, hyperinflammatory reactions in response to SARS-CoV-2 lead to the
rapid formation of autoimmune and/or autoinflammatory dysregulation and, as a
consequence, to the development of severe interstitial pneumonia [100]. One of the
explanations for the development of autoimmune complications may also be the
molecular similarity of SARS-CoV-2 Sproteins with surfactant proteins that Kanduc
study showed [28]. The course of COVID-19 infection can be significantly
influenced not only by factors of the genetic predisposition of the host organism, but
also by existing diseases that affect the lung tissue. In this regard, the study of
various forms of the course of COVID-19 in patients with tuberculosis is the
particular interest. Immune response in patients with M. tuberculosis infection,
sarcoidosis and SARS-CoV-2 infection are presented in table 1.

Recent studies have shown that the incidence of CD4+CD25+ T cells was
higher in patients with active TB in contrary with latent TB. However, there were
no differences in relative number of Treg cells, identified by flow cytometry as
CD4+CD25+CD127lo, CD4+CD25+FoxP3+, or CD4+CD25+FoxP3+CD127lo
[146]. A correlation analyzis revealed the close link between the stages of treatment
in patients with tuberculosis and Treg cells. Prior to treatment, patients had higher
frequencies of CD4+CD25high Treg and more pronounced expression of FoxP3 in
peripheral blood compared to healthy controls [44]. Overall, on and tuberculosis
show that this is not an unambiguous problem. In conditions of excessive
inflammation regulatory T cells in Thc may be useful [21].

In sarcoidosis, there was a decrease in the number of Tregs cells in
bronchoalveolar lavage (BAL), while, oppositely, in the peripheral blood samples

these cells increased. However, in the same group of patients, peripheral blood Treg
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cells were three times lower if compared to healthy donors [50]. In addition, many
studies have noted a decrease in the level of the Treg transcription factor FOXP3 in
BALF, which indicates a decrease in the functionality of these cells [30, 50, 88].
Recently, we noted that the relative numbers of central memory CD45RA-CCR7+
Tregs was decreased in patients with sarcoidosis, while the frequency of circulating
effector memory and effector Tregs was increased if compared to healthy controls
[66]. In our previous studies, we also noticed an evaluated CD39 expression on the
surface of Treg cells in both acute and chronic sarcoidosis [51]. We have found that
the content of CD39-positive cells increases in both chronic and acute sarcoidosis.
In addition, the level of CD39+ cells among CD45R0+CD62L+ T-regulatory central
memory cells in patients with both acute and chronic sarcoidosis significantly
exceeded the values in the control group. CD45R0+CD62L- T-regulatory effector
memory cells increased in peripheral blood only in the chronic sarcoidosis group.
We have also shown that in chronic sarcoidosis the content of the total phenotype of
T-regulatory cells in the peripheral blood is significantly lower than that in the
control group [51]. Thus, alterations in Treg cell numbers in circulation, their
phenotypes and/or functional activity could be associated with high risk of
autoimmune diseases in numerous models and human autoimmune diseases [71].

2 Similarity of immune response in COVID-19, sarcoidosis and

tuberculosis

It is considered that both for sarcoidosis and tuberculosis, an autoimmune
damaging component of healthy lung tissue is involved (Fig 1).

For example, for acute respiratory distress syndrome while COVID-19
infection a neutralising auto-antibodies to type | IFNs were determined [133]. It is
known that these types of interferons are responsible for MHC molecules' expression
increment in infected cells and virus elimination from the organism [106]. Natural
and adaptive immunity is also relevant in fibrogenesis for these pathologies [148].
This is why the research of immunocompetent cells separately and in combination

Is substantial. This could be the key for determination of prognosis for patients with
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comorbidity, as well as an assistance for further therapy correction. Nowadays it is
possible to parallel Thl in these pathologies. When recognizing a specific antigen in
peripheral tissues effector Thl cells produced IFNg, that activates various inntate
and adaptive immunity cells, including CD8+ T-cells, ILC1 and macrophages, that
take part in pathogen elimination [9]. Hyperproduction of IFNy and TNFa by Thl
cells as the response for SARS-CoV-2, as well as mass virus infected cell death can
lead to lung tissue damage and trigger acute respiratory distress syndrome. Thus,
Thl cells migration to inflamed tissues marginally specifies certain fraction
decreasement of these cells in patients’ peripheral blood when in the acute phase of
infection. This Th1 cells migration was noted in several independent researches [72,
112]. Thereby an opportunity of revealing new data of immune variation for patients
with tuberculosis and lung sarcoidosis and their impact on disease progress after
COVID-19 is crucial and prompt. A practical application of received data can raise
the effectiveness of curation and observation of patients with tuberculosis and
sarcoidosis in future.

4 Discussion

SARS-CoV-2 has many harmful direct effects on various cell of different
location, these effects could directly damage to the cells of the respiratory system,
as well as could effect in-directly causing circulatory disorders. The direct cytotoxic
effect of SARS-CoV-2 virus is due to the virus penetration to ACE2-expressing cells
- alveolocytes, which leads to pneumonia development [77]. There is an unrestricted
inflammatory infiltration of immune cells in the lungs which, in addition to direct
viral damage, take part in self tissue damage due to excessive secretion of
proinflammatory cytokines and chemokines, proteolystic enzymes and reactive
oxygen species. Diffuse alveolar damage, characterized by desquamation of alveolar
cells, the formation of hyaline membranes, and the development of pulmonary
edema. Finally, microcirculation disturbance due to endothelial cell and vascular, as
well as increased thrombus formation increase lung tissue damage and reduce the

effectiveness of reparative processes in general [144].
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In severe COVID-19, a cytokine storm develops, characterized by the
production of vascular growth factor (VEGF), monocyte chemoattraction protein-1
(MCP-1), IL-8, and additionally IL-6 [49, 55, 59]. There is an activation of alveolar
macrophages, the complement cascade along the lectin pathway, locally formed
immune complexes that enhance pro-inflammatory processes. Activation of the
complement system leads to damage to the endothelium, and also induces leukocytes
through components C3a and Cba to produce pro-inflammatory cytokines
interleukin (IL)-1, IL-6, IL-8, and IFNy [8].

It should be noted that in patients with severe COVID-19 showed increase in
serum CXCR9 and CXCR10. They together with increased levels of both cellular
("non-classical™ monocytes, CD38+HLA-DR+ T cells and granzyme-B+/perforin+
T -cells) and serum (CXCLS, IL-6 and IL-10 levels) factors made it possible to
differentiate mild and severe course of the disease [97]. The data obtained, according
to the authors of the study, indicate the fact that polarization towards Thl is
associated with a high cytolytic profile of T cells in patients with severe COVID-19.
Moreover, when analyzing BAL cells from patients with COVID-19, an increase in
the proportion of IFNy- and/or TNFa producing Th1l was noted, whereat the mRNA
level an increase in the expression of chemokines CCL4 and CCL5 or CCL2,
CCL18, CXCL9, CXCL10 and CXCL11 was noted, respectively, which contributed
to the attraction of leukocytes to the focus and inflammation in the lung tissue [145].

The interaction of CXCR3 with ligands plays an important role in infectious,
auto-immune, and oncological diseases, as well as in a number of pathological
conditions associated with dysregulation of angiogenesis [13]. The chemokine
receptor CXCR3 interacts with several ligands (chemokines), including CXCL9 or
MIG (monokine induced by gamma-interferon), CXCL10 or IP-10 (interferon-
induced protein of 10kDa), as well as CXCL11 or I-TAC [42]. All of the listed
CXCR3-binding chemokines have a number of functional features [42]. Migration
of CD4+ T-cells from peripheral blood to damaged tissues in sarcoidosis is possible

due to the presence of the chemokine receptor CXCR3 on the cell surface. A number
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of papers were devoted to the study of ligands for CXCR3 in sarcoidosis [73]. This
was determined that CXCR3-expressing cells were involved in the formation of
granulomas in sarcoidosis, and, on the other hand, the main inducer of the synthesis
of all the studied CXCR3 ligands was IFNy, which played an important pathogenetic
role in the development of immune responses during sarcoidosis [19]. It was also
noticed that in sarcoidosis CXCR3 ligands — CXCL9, CXCL10, CXCL11 - provide
CD4+ T-cell and monocytes homing to the lesions for further formation of
granulomas [73]. These chemokines are also involved in angiogenesis and cell
proliferation in sarcoidosis. The typical adaptive immune response in sarcoidosis is
characterized by the pres-ence of IFNy producing CD4+ cells in inflamed tissues,
which supports the idea that sarcoidosis is a T-helper cell type 1 (Th1) disease.

The literature data on the possible use of the levels of CXCL9, CXCL10,
CXCL11 - chemokines in the peripheral blood of patients with sarcoidosis for
clinical and laboratory generalizations. Some authors point the role of CXCL10 in
the mechanisms of granuloma formation in both acute and chronic sarcoidosis [73].
Similarly, Arger et al indicated that increased the level of peripheral blood and BAL
CXCL11 in patients with sarcoidosis correlated with a decrease in respiratory
function, lung volumes, and, accordingly, with a worsening of the course of the
disease.

In sarcoidosis, there is also local overproduction of Th1 profile cytokines such
as IL-2 and (IFNy) associated with high expression of macrophage-derived
molecules such as IL-15, CXCL10, CXCL16, CCL5 and CCL20 [19]. The activity
of Thl is associated with the intensity of the process of granuloma formation, the
nature of the clinical course of sarcoidosis and its outcome. It is worth remembering
that Thl7 lymphocytes are actively involved in the pathogenesis of most
inflammatory processes in autoimmune and infectious diseases. The pro-
inflammatory cytokines IL-1p, IL-6, and 1L-23 play the most important role in the
“polarization” of ThO towards Th17 [146] and their attraction to the focus of
inflammation, and IL-22, the main function of which is the activation of the
protective functions of the cells of the epithelial layers [5]. With COVID-19, a
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decreased levels of Th cells carrying on their cell-surface key Th17 antigens —
CD161 and CCR6 — were noted, compared with the control group [85]. It is worth
remembering that Th17 lymphocytes are actively involved in the pathogenesis of
most inflammatory processes in autoimmune and infectious diseases. The
proinflammatory cytokines IL-18, IL-6, and IL-23 play the most important role in
the “polarization” of ThO towards Th17 [85]. Next, Th17 migrated to the sites of
inflammation, and produced IL-22, that played the initial role in activation of
epithelial layers cells activation and increase of their protective functions [5, 85].

Similar results were obtained using methods of molecular biology, when it was
shown that expression of Th17-associated genes were reduced in peripheral blood
CD4+ T-cells of patients with severe COVID-19, for example, RORC, IL17A,
IL17F, and CCR6 [85]. These cells migrated to the sites of infection, which was
confirmed by studies of BAL. In bronchoalveolar lavage fluid during COVID-19
infection, Th17 had the phenotype of tissue resident memory T cells, and also
expressed genes associated with cytolytic properties (SRGN, GZMB and GNLY)
and cytokine genes - IL-21, IL-17F, IL -17A, IFNg and GM-CSF. Next, the lung
tissues of COVID-19 patients were enriched in cells co-expressing CCR6 and
IL17A, and high levels of IL-6, IL-17A, GM-CSF and IFNg were found in BALF,
which may explain the volumetric inflammatory changes in severe patients. with
pneumonia [54]. This subpopulation of CD3+CDA4+ cells has also been considered
in sarcoidosis. The frequency of T-cells producing IL-17 increased in the peripheral
blood and lungs of patients with sarcoidosis compared with the control group [131].
Moreover, IL-17A was showed in mature granuloma formation in response to
mycobacterial infections [94]. A recent large case-control study confirmed an
association between genetic variants of the I1L-23 receptor (which promotes the Th17
response) in different cohorts of patients with sarcoidosis [39].

Previously, we have already determined that in the chronic course of
sarcoidosis, the number of Th17 lymphocytes in the peripheral blood is increased

relative to the group of patients with an acute course of the same disease [39, 131].
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This confirms the assumption that Th17 is mainly involved in the acute phase of
inflammation, synthesizing a large number of pro-inflammatory cytokines.

In tuberculosis, the main role in the immune response is played by adaptive
immunity, which is carried out mainly by T lymphocytes. Thl cells contribute to
protection against tuberculosis by secreting IFN-y and activating antimycobacterial
activity in macrophages [81]. There is a hypothesis that the balance between Thl
and Th17.1 lymphocytes with a higher content of Th1 cells compared to Th17.1 may
contribute to the development of an effective immune response to the penetration of
M. tuberculosis into the cell [81]. In some studies, the production of antigen-specific
IFN-y by Th1 cells correlated with a decrease in mycobacterial load [81]. Similarly,
in bronchoalveolar lavage fluid there was an increased number of Th1 lymphocytes,
as well as cytokines of the profile of the same cells - IFNy and TNFa compared with
healthy controls. However, the number of Thl cells, IFNy and TNFa did not differ
from those in patients with sarcoidosis [23, 98].

In our previous studies, it was demonstrated that the level of Th17 cells in
peripheral blood significantly decreased in patients with tuberculosis [68]. Similar
results were obtained when subset composition of peripheral blood Th in TB was
analyzed using in vitro nonspecific stimulation methods, when it was shown that the
level of CD4+IL-17A+ cells decreased during infection [93]. Similarly, elevated
levels of CD4+IL-17+ T-cells were found in the lungs, that process confirmed the
migration of this subpopulation to the site of inflammation during acute infection
[76] Effector antigen-specific Th17 in peripheral tissues produce effector cytokines
(IL-17A, IL-17F and IL-22), which activate various immune and non-immune cells
of connective tissues, increasing the efficiency of their defense reactions aimed at
eliminating extracellular pathogens [76]. Moreover, a decrease in the level of IL-17
in the peripheral blood of patients with tuberculosis was closely associated with the
low effectiveness of the therapy used and the poor outcome of this disease [24].

5 Conclusion
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Current evidences about the risk and clinical outcomes of COVID-19 infection in
patient with sarcoidosis and tuberculosis are still not well understood. COVID-19,
sarcoidosis and tuberculosis share similar common pathogenetic pathways, and all
three diseases affect primarily the lung tissue. Multiple sets of conflicting clinical
data showed that patients with sarcoidosis and tuberculosis immune response
correlated with decreasing pulmonary function and higher risk of adverse outcomes
from COVID-19. In some respects, the immune responses during COVID-19 and
two pulmonary conditions had some similarities, ranging from the Th-cell subsets
imbalance, inflammatory cytokines production to altered B cell activation and
excessive infiltration of inflammatory sites by highly activated peripheral blood
cells, which could lead to excessive tissue damage. Therefore, the identification of
new immunological features of sarcoidosis and tuberculosis during or following
SARS-CoV-2 infection will provide us with a deeper understanding of the diagnosis
and treatment of these pathological conditions.
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TABLES

Table 1. Features of the immune response in patients with Tbc, sarcoidosis and

COVID-19.
Cells COVID-19 Sarcoidosis Tuberculosis
Thl 1154, 112]; 1M91]; |[67] 179, 132]
1[43, 107, 109]
Th2 131, 41, 43] 1167, 74, 1162, 68];
91] not significant
[79]
Th1l7 196, 137, 11101, 103]; 1[62, 68]
142]; |31, 37, 1[131]
43, 54]
Tth 141, 112]; 1[29]; T[68]; |[68]
1[43, 54, 56] not not significant
significant [62]
[67, 65];
1[80]
Treg 122, 128]; 1118,88]; 123, 26, 44, 114,
1163, 89] 1[47, 50, 146]
51]
Th maturation
‘naive’ Th L7, 86] 1[32, 68] not significant
[68]
CM Th 11108, 121] 1[68] L[68]
EM Th 186] 1[68] 11134];
not significant
[68]
TEMRA Th 1131, 86] 1168] 168];
1[134]
Tcyt maturation
‘naive’ Tcyt 1192]; L[75] 1[134]
L[31, 70, 141]
CM Tcyt 1146, 70, 141]; L[75] 1[134]
1[31, 92]
EM Tcyt 13, 86]; L[75] 1[134]
1[46, 70, 86]




TEMRA Tcyt 1160, 86]; 175] 1134]
I[70]
B-lymphocytes
‘naive’ B-cells 1[31, 69] 165, 80, 110] 1[52]
Memory B-cells 1[31, 69] 1165, 80, 110] L[2]
Plasmablasts 131, 56, 69, 120] 165, 110]; L2]

not significant
[80]




EXPERIENCE WITH THE USE OF GLUCAFERON
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Figure 1. Scheme of immune response in COVID-19, sarcoidosis and tuberculosis.
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